首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose

Various approaches have been carried out to extrapolate environmental assessments of farms to the regional level, some of them oversimplified and thus leading to high uncertainty. Key challenges include selection of a representative sample, construction of a farm/land use typology, the extrapolation strategy and dealing with data limitations. This work proposes a method for addressing these issues by means of statistically supported approaches.

Methods

We applied a novel approach combining a sampling strategy, estimation of farm-level environmental impacts via life cycle assessment (LCA), a farm typology based on principal component analysis, a statistical method for extending the farm sample given data constraints and finally linear extrapolation based on regional production and land use, taking into account the regional import–export balance. The approach was applied to a French case study, the Lieue de Grève catchment in the dairy-intensive Brittany region. A decision flowchart was developed to generalise the approach for similar applications dealing with farm and LCA data constraints. Additionally, innovative farm practices were modelled and their impacts propagated to the regional level.

Results and discussion

The typology developed identified “dairy”, “beef”, “dairy + beef” and “swine” farms as the dominant farm types in the region. While swine farms had the highest mean impacts per hectare, dairy and dairy + beef farms had impacts two to five times as high as those of beef and swine farms, when extrapolated to the entire catchment. Multiple linear regressions based on an extended farm and LCA dataset were used to predict environmental impacts of dairy farms lacking LCA results, thus increasing their sample size before extrapolation. The inclusion of farm and LCA data from a neighbouring region did not contribute to the accuracy of predicted impacts, as determined by comparing them to those of the farm closest to the dairy cluster’s centre, but rather produced significantly larger coefficients of variation. Results of tests of including two extra-regional farm and LCA datasets helped determine decision rules for the decision flowchart. Modelling of innovative agricultural practices yielded regional impacts consistent with previous estimates.

Conclusions

This approach provides a generalisable approach for farm typologies, data handling and regional extrapolation of farm-level LCAs, applicable to estimate environmental impacts of any agricultural area if requirements of a representative farm sample are met. We demonstrate the utility of the method for estimating effects of innovative agricultural practices on a region’s impacts by modelling practices on virtual farms and extrapolating their results.
  相似文献   

2.

Purpose

In Algeria, the Ministry of Fisheries and Halieutic Resources has designed a strategic plan for the development of marine aquaculture for the years 2015–2025, which aims at expanding the annual production of Mediterranean mussel from less than 150 metric tonnes year?1 in 2013 to 7600 metric tonnes year?1 in 2025. We used Life Cycle Assessment (LCA) for evaluating the environmental impact of suspended mussel culture in Algeria and suggest management practices which could reduce it.

Methods

In order to estimate the current and perspective impact of this industry, we (1) applied LCA to one of the few farms currently operating in Algeria and (2) investigated two management scenarios for the farms to be established in the future in the same coastal area. The first scenario (Comp_S) represents the continuity with the current situation, in which each farm is competing with the other ones and is therefore managing the production cycle independently. In the second scenario (Coop_S), mussel farms are grouped in an aquaculture management area and shared the same facilities for post-processing harvested mussels before sending them to the market. The midpoint-based CML-IA method baseline 2000 V 3.01 was employed using SimaPro software. Furthermore, we carried out a Monte Carlo simulation, in order to assess the uncertainty in the results.

Results and discussion

The analysis focused on impact categories related to acidification and global warming potential. We took into account the energy consumptions (electricity and vessel fuel), the rearing infrastructure, including longlines, and a building for stabling, grading, and packing the mussel. Electricity contributes with 38.1 and 31.8 % respectively to global warming potential (GWP) and acidification, while fuel consumption contributes with 19.5 % to GWP and 31.8 % to acidification. Results of this work are compared with other LCA studies recently carried out in France (Aubin and Fontaine 2014) and in Spain (Iribarren et al. 2010c).

Conclusions

The LCA results show that important reductions in environmental impacts could be attained if the mussel farming activity would be operated according to the cooperative scenario here proposed. In this case, the environmental benefits will be a reduction of 3150 MJ and 156 kg CO2 eq per metric tonne of mussel produced, compared with the alternative scenario. The results of this study suggest that LCA should be applied to the seafood production sector in Algeria, in order to identify best management practices.
  相似文献   

3.

Purpose

Taking into account the large area of citrus in Spain and the impacts generated by agriculture, reducing the environmental impact of this crop represents an important goal. This study attempts to compare the environmental impact of two citrus cropping systems, organic and conventional, in the region of Valencia (Spain), and to assess the variability within both farming systems in order to highlight the influence of management practices on the environmental performance.

Methods

A survey was carried out on citrus farmers, 145 corresponding to organic production and 122 to conventional. Life cycle assessment (LCA) was used to estimate the environmental impacts of farms and the contribution of each production stage to impacts. Two functional units (FUs), mass- and area-based, were chosen. The variability and confidence intervals of the average impact results were assessed by means of a bootstrap technique. Finally, a k-means cluster analysis was performed to identify groups of farms with comparable impact levels.

Results and discussion

The mean impact values of the conventional farm sample were higher than those of the organic farms, when using 1 ha year?1 as FU, whereas for the FU of 1 kg no differences were found for some impact categories. Most of the impact results were also observed to be highly variable. The distribution of the mean after the bootstrap confirmed both the variability of the impacts and the differences between the farming systems. The cluster analysis determined two groups via their impact categories. Cluster-1, which showed higher impacts, was made up of part of the conventional farms while cluster-2 included the remaining conventional farms and all the organic ones. No difference in yield was found between the conventional farms of both clusters.

Conclusions

Bootstrapped LCA offers the ability to assess the variability of the impacts, regardless of the sample size and the non-normal impact distributions. The cluster analysis shows that conventional farms can attain similar impacts than the organic ones, while maintaining the yield. FU selection is crucial, since a mass-based FU reduces the difference in the environmental performance between conventional and organic farms. To attain a more sustainable citrus farming, a careful selection of the management practices is needed.
  相似文献   

4.

Purpose

Integrated multi-trophic aquaculture (IMTA), growing different species in the same space, is a technology that may help manage the environmental impacts of coastal aquaculture. Nutrient discharges to seawater from monoculture aquaculture are conceptually minimized in IMTA, while expanding the farm economic base. In this study, we investigate the environmental trade-offs for a small-to-medium enterprise (SME) considering a shift from monoculture towards IMTA production of marine fish.

Methods

A comparative life cycle assessment (LCA), including uncertainty analysis, was implemented for an aquaculture SME in Italy. Quantification and simultaneous propagation of uncertainty of inventory data and uncertainty due to the choice of allocation method were combined with dependent sampling to account for relative uncertainties and statistical testing and interpretation to understand the uncertainty analysis results. Monte Carlo simulations were used as a propagation method. The environmental impacts per kilo of fish produced in monoculture and in IMTA were compared. Twelve impact categories were considered. The comparison is first made excluding uncertainty (deterministic LCA) and then accounting for uncertainties.

Results and discussion

Deterministic LCA results evidence marginal differences between the impacts of IMTA and monoculture fish production. IMTA performs better on all impacts studied. However, statistical testing and interpretation of the uncertainty analysis results showed that only mean impacts for climate change are significantly different for both productive systems, favoring IMTA. For the case study, technical variables such as scales of production of the species from different trophic levels, their integration (space and time), and the choice of species determine the trade-offs. Also, LCA methodological choices such as that for an allocation method and the treatment of relative uncertainties were determinant in the comparison of environmental trade-offs.

Conclusions

The case study showed that environmental trade-offs between monoculture and IMTA fish production depend on technical variables and methodological choices. The combination of statistical methods to quantify, propagate, and interpret uncertainty was successfully tested. This approach supports more robust environmental trade-off assessments between alternatives in LCAs with uncertainty analysis by adding information on the significance of results. It was difficult to establish whether IMTA does bring benefits given the scales of production in the case study. We recommend that the methodology defined here is applied to fully industrialized IMTA systems or bay-scale environments, to provide more robust conclusions about the environmental benefits of this aquaculture type in Europe.
  相似文献   

5.

Purpose

The majority of sustainability studies of dairy farms focused on environmental performance and profitability; however, social aspect has been hardly assessed. This study aims to investigate the social impacts of dairy farm via a case study using a social life cycle assessment framework.

Methods

The assessment was carried out applying the social LCA Guideline by UNEP-SETAC. Nineteen suitable social indicators were selected from four stakeholder categories of the guideline. Characterization and normalization were further developed based on data availability. National farm survey data was used as foreground data for farm activities, supplemented with background data from public database and life cycle working environment (LCWE) data by Gabi database. All indicators were divided into three groups: functional unit-related quantitative indicators, non-functional unit-related quantitative indicators and semi-quantitative indicators.

Results and discussion

Irish dairy farming has positive social impacts on value chain actors and society, predominantly positive impacts for local community and generally positive values for workers. The main negative impacts are health and safety issue, equal opportunity for workers, and safe and healthy living conditions for the local community. Possible actions to improve the social performance include introducing more efficient and robotic milk production systems; applying better handling methods and using real time decision support to operational management for emissions reduction.

Conclusions

This study is the first attempt of social LCA in Ireland. It demonstrated a possible method to carry out SLCA for Irish dairy sector. The results identified the positive and negative social hotspot of dairy farm with recommendation for future improvement.
  相似文献   

6.

Purpose

In order to meet the upscaling demand of food products worldwide, the aquaculture industry has been expanding within the last few years in developed countries. Major expansions of aquaculture farming occurred in many developed countries such as Bangladesh, Indonesia, and Egypt. Egypt ranks ninth in fish farming production worldwide and first on Africa. Egypt has the largest aquaculture industry in Africa which represents two-thirds of African aquaculture production. Tilapia production accounts for 75.5 % of aquaculture production in Egypt. Tilapia aquaculture production has grown exponentially in recent decades until it reached 4.5 million tonnes in 2012 placing Egypt as the second worldwide producer of tilapia after China. The production of tilapia is practiced in different production systems including intensive and semi-intensive systems. These production systems require different resources and impact differently on the environment. The aim of the current study was to model the environmental performance of tilapia production and compare semi-intensive and intensive production systems. The main questions were the following: What are the different impacts of tilapia production on the environment? Which production system is more environmentally friendly? What are the preferable practices for better environmental performance and sustainable ecofriendly industry of Tilapia production?

Methods

Life cycle assessment (LCA) was employed to determine the environmental impacts of tilapia production and compare semi-intensive and intensive production systems. Data for life cycle inventory were collected from two case study farms for tilapia production in Egypt. Four impact categories were taken into consideration: Global Warming Potential (GWP), Acidification Potential (AP), Eutrophication Potential (EP), and Cumulative Energy Demand (CED).

Results and discussion

LCA revealed that production of tilapia in intensive farming has less impact on GWP, AP, and CED, while its impact on EP is higher than in semi-intensive farming. The identified impacts from 1-tonne live weight production of tilapia were the following: GWP 960.7 and 6126.1 kg CO2 eq; AP 9.8 and 24.4 kg SO2 eq; EP 14.1 and 6.3 kg PO2 eq; and CED 52.8 GJ and 238.3 GJ eq in intensive and semi-intensive systems, respectively.

Conclusions

Fish meal production and energy consumption were the major contributors to different impact indicators in both systems. An overall improvement in environmental performance for tilapia production can be achieved by novel feed formulations that have better environmental performance. Energy consumption is a major area for improvement as well, as proper energy management practices will reduce the overall impact on the environment.
  相似文献   

7.

Purpose

Life cycle assessment (LCA) can be used to understand the environmental impacts of the shellfish aquaculture and wild harvest industries. To date, LCA of shellfish exclude carbon dioxide (CO2) release from bivalve shell production when quantifying global warming potential per functional unit. In this study, we explain the rationale for including CO2 released during shell production in LCA of bivalves, demonstrate a method for estimating this CO2 release, and apply the method to previous studies to demonstrate the importance of including CO2 from shell production in LCA.

Methods

A simple approach for calculating CO2 from bivalve shell production was developed utilizing the seacarb package in R statistical software. The approach developed allows for inclusion of site-specific environmental parameters such as water temperature, salinity, pH, and pCO2 when calculating CO2 release from shell production. We applied the method to previously published LCA of bivalve production systems to assess the impact of including this CO2 source in the LCA. The past studies include aquaculture and wild harvest production strategies and multiple bivalve species.

Results and discussion

When we recalculated the total kg CO2 released in past studies including CO2 release from shell production, the additional CO2 release increased the total global warming impact category (CO2 equivalents) in cradle-to-gate studies by approximately 250% of the original reported value. Discussion of our results focuses on the importance of different components of our calculations and site-specific environmental parameters. We make predictions on how the magnitude and importance of CO2 released during shell production could change due to climate change and ocean acidification, and provide suggestions on how CO2 release from shell production can be reduced through careful selection of aquaculture facility location and aquaculture practices.

Conclusions

We provide a method for including CO2 from shell release in LCA of bivalves and recommend that future LCA of bivalves include this CO2 as part of the global warming impact category.
  相似文献   

8.

Purpose

Bivalve production is an important aquaculture activity worldwide, but few environmental assessments have focused on it. In particular, bivalves’ ability to extract nutrients from the environment by intensely filtering water and producing a shell must be considered in the environmental assessment.

Methods

LCA of blue mussel bouchot culture (grown out on wood pilings) in Mont Saint-Michel Bay (France) was performed to identify its impact hotspots. The chemical composition of mussel flesh and shell was analyzed to accurately identify potential positive effects on eutrophication and climate change. The fate of mussel shells after consumption was also considered.

Results and discussion

Its potential as a carbon-sink is influenced by assumptions made about the carbon sequestration in wooden bouchots and in the mussel shell. The fate of the shells which depends on management of discarded mussels and household waste plays also an important role. Its carbon-sink potential barely compensates the climate change impact induced by the use of fuel used for on-site transportation. The export of N and P in mussel flesh slightly decreases potential eutrophication. Environmental impacts of blue mussel culture are determined by the location of production and mussel yields, which are influenced by marine currents and the distance to on-shore technical base.

Conclusions

Bouchot mussel culture has low environmental impacts compared to livestock systems, but the overall environmental performances depend on farming practices and the amount of fuel used. Changes to the surrounding ecosystem induced by high mussel density must be considered in future LCA studies.
  相似文献   

9.

Purpose

Regional life-cycle assessment (LCA) is gaining an increasing attention among LCA scholars and practitioners. Here, we present a generalized computational structure for regional LCA, discuss in-depth the major challenges facing the field, and point to a direction in which we believe regional LCA should be headed.

Methods

Using an example, we first demonstrate that when there is regional heterogeneity (be it due to environmental conditions or technologies), average data would be inadequate for estimating the life-cycle impacts of a product produced in a specific region or even that of an average product produced in many regions. And when there is such regional heterogeneity, an understanding of how regions are connected through commodity flows is important to the accuracy of regional LCA estimates. Then, we present a generalized computational structure for regional LCA that takes into account interregional commodity flows, can evaluate various cases of regional differentiation, and can account for multiple impact categories simultaneously. In so doing, we show what kinds of data are required for this generalized framework of regional LCA.

Results and discussion

We discuss the major challenges facing regional LCA in terms of data requirements and computational complexity, and their implications for the choice of an optimal regional scale (i.e., the number of regions delineated within the geographic boundary studied).

Conclusions

We strongly recommend scholars from LCI and LCIA to work together and choose a spatial scale that not only adequately captures environmental characteristics but also allows inventory data to be reasonably compiled or estimated.
  相似文献   

10.

Purpose

Life cycle assessment aims to evaluate multiple kinds of environmental impact associated with a product or process across its life cycle. Objective evaluation is a common goal, though the community recognizes that implicit valuations of diverse impacts resulting from analytical choices and choice of subject matter are present. This research evaluates whether these implicit valuations lead to detectable priority shifts in the published English language academic LCA literature over time.

Methods

A near-comprehensive investigation of the LCA literature is undertaken by applying a text mining technique known as topic modeling to over 8200 environment-related LCA journal article titles and abstracts published between 1995 and 2014.

Results and discussion

Topic modeling using MALLET software and manual validation shows that over time, the LCA literature reflects a dramatic proportional increase in attention to climate change and a corresponding decline in attention to human and ecosystem health impacts, accentuated by rapid growth of the LCA literature. This result indicates an implicit prioritization of climate over other impact categories, a field-scale trend that appears to originate mostly in the broader environmental community rather than the LCA methodological community. Reasons for proportionally increasing publication of climate-related LCA might include the relative robustness of greenhouse gas emissions as an environmental impact indicator, a correlation with funding priorities, researcher interest in supporting active policy debates, or a revealed priority on climate versus other environmental impacts in the scholarly community.

Conclusions

As LCA becomes more widespread, recognizing and addressing the fact that analyses are not objective becomes correspondingly more important. Given the emergence of implicit prioritizations in the LCA literature, such as the impact prioritization of climate identified here with the use of computational tools, this work recommends the development and use of techniques that make impact prioritization explicit and enable consistent analysis of result sensitivity to value judgments. Explicit prioritization can improve transparency while enabling more systematic investigation of the effects of value choices on how LCA results are used.
  相似文献   

11.

Purpose

To promote eco-efficient sugarcane products, there is a need for life cycle assessment (LCA) methods that enable rapid assessment of the environmental implications of alternative agricultural practices. In response, a customised LCA method for sugarcane growing was developed and operationalized in the CaneLCA tool. The aim of the paper was to describe the CaneLCA method in detail and to test the effectiveness of the tool’s parameterisation for evaluating the environmental implications of cane growing practice alternatives.

Methods

CaneLCA (Version 1.03) was developed over 6 years (2011–2017) in conjunction with the Australian sugarcane sector. The LCA process was customised for sugarcane growing by focusing on ‘cradle to farm gate’ operations and relevant impact categories, and by parameterising practice variables. To evaluate the effectiveness of the tool, we used it to assess a case study of actual practice changes in the Wet Tropics region of Australia, in terms of the scope of practice variables and environmental implications that can be accounted for.

Results and discussion

The case study results generated by CaneLCA were consistent with those generated by past studies using LCA software. The parameterisation of practice variables allowed for all the practice changes represented in the case study to be assessed. It is suitable for evaluating such known practice alternatives, but less suited to evaluating very innovative practice alternatives, as it is constrained by the underlying algorithms and factors. Most of the environmental implications could be considered, except for effects on soil quality. This will be an area for future tool development to understand the full implications of agricultural practice change, along with the introduction of dynamic models to better estimate emissions.

Conclusions

CaneLCA makes the LCA process more rapid for evaluating alternative sugarcane growing practices, thereby speeding up progress towards devising more eco-efficient sugarcane products. It provides a model that could be adapted for other sugarcane growing regions, and for other perennial cropping systems. The novelty of the method is the detailed parameterisation of practice variables so that a wide range of alternative practices can be evaluated.
  相似文献   

12.

Purpose

Life cycle assessment (LCA) is commonly presented as a tool for rational decision-making. It has been increasingly used to support decision-making in situations where multiple actors possess diverse, and sometimes conflicting, perspectives, values and motives. Yet, little effort has been placed on understanding LCA in a social framework of action. This paper aims to analyse the legitimacy of LCA in public sector decision-making situations, the criticisms presented against LCA, and suggest potential ways to alleviate these criticisms.

Methods

This study consists of a case study of the application of LCA in the waste management sector in England and France. To gain an understanding of the justification and criticism of LCA, semi-structured interviews were undertaken with national and local level waste management actors. The justifications and criticism of the application of LCA was analysed through an analytical framework, the economies of worth. This suggests that in situations of disagreement, actors’ justifications are required to show their attachment to plural forms of common good. This work analyses the orders of worth in which justifications and criticisms of the application of LCA were based.

Results and discussion

LCA is applied primarily as a test of environmental efficiency, illustrating a collaboration between the industrial and green orders of worth. Actors apply LCA with the aspiration of replicating the scientific method and producing robust evidence to support the most efficient waste treatment option. In this case, efficiency is coupled with the green order of worth, where gains in efficiency mean lower environmental impacts. Internal criticisms of LCA, based in the industrial order of worth, highlights the limitations of LCA to act as a test of environmental efficiency. Furthermore, criticism based in the civic order of worth highlights the friction which arises in decision-making situations when LCA has been seen to subjugate the civic nature of waste management decisions.

Conclusions

One potential way forward for LCA may be to introduce aspects relevant in the civic order of worth which aims at achieving a compromise between the industrial and civic orders of worth. Envisioning LCA as a process-oriented tool, as opposed to an outcome-oriented tool, can allow for aspects on public involvement in the LCA process, thereby increasing its civic legitimacy.
  相似文献   

13.

Purpose

Cheese is one of the world’s most widely consumed dairy products and its popularity is ever growing. However, as concerns for the environmental impact of industries increase, products like cheese, which have a significant environmental impact, may lose their popularity. A commonly used technique to assess the environmental impact of a product is life cycle assessment (LCA). In this paper, a state-of-the-art review of LCA studies on the environmental impact of cheese production is presented.

Methods

Sixteen LCA studies, which explored the impact from the production of a variety of cheese types (fresh, mature and semi-hard) were examined and discussed. The four stages of the LCA were examined and the range of results of selected environmental impact categories (global warming potential, acidification potential and eutrophication potential) were detailed and discussed.

Results and discussion

For each of these environmental impact categories, raw milk production was consistently found to be the most significant contributor to the total impact, which was followed by processing. It was found that allocation between cheese and its by-products was crucial in determining the impact of cheese production and standardisation or guidelines may be needed. Very little information relating to wastewater treatment system and processes were reported and this leads to inaccurate environmental impact modelling relating to these aspects of the manufacture of cheese. Very few studies included the design of packaging in terms of reducing food waste, which may significantly contribute to the overall environmental impact.

Conclusions

As raw milk production was found to have the greatest contribution to environmental impact, mitigation strategies at farm-level, particularly in relation to enteric fermentation and manure management, need to be implemented. Additionally, based on the literature, there is a suggestion that fresh cheese has less of an environmental impact than semi-hard cheeses, particularly when examining direct energy consumption. However, there needs to be more case studies investigated to justify this statement.
  相似文献   

14.

Purpose

We investigate how the boundary between product systems and their environment has been delineated in life cycle assessment and question the usefulness and ontological relevance of a strict division between the two.

Methods

We consider flows, activities and impacts as general terms applicable to both product systems and their environment and propose that the ontologically relevant boundary is between the flows that are modelled as inputs to other activities (economic or environmental)—and the flows that—in a specific study—are regarded as final impacts, in the sense that no further feedback into the product system is considered before these impacts are applied in decision-making. Using this conceptual model, we contrast the traditional mathematical calculation of the life cycle impacts with a new, simpler computational structure where the life cycle impacts are calculated directly as part of the Leontief inverse, treating product flows and environmental flows in parallel, without the need to consider any boundary between economic and environmental activities.

Results and discussion

Our theoretical outline and the numerical example demonstrate that the distinctions and boundaries between product systems and their environment are unnecessary and in some cases obstructive from the perspective of impact assessment, and can therefore be ignored or chosen freely to reflect meaningful distinctions of specific life cycle assessment (LCA) studies. We show that our proposed computational structure is backwards compatible with the current practice of LCA modelling, while allowing inclusion of feedback loops both from the environment to the economy and internally between different impact categories in the impact assessment.

Conclusions

Our proposed computational structure for LCA facilitates consistent, explicit and transparent modelling of the feedback loops between environment and the economy and between different environmental mechanisms. The explicit and transparent modelling, combining economic and environmental information in a common computational structure, facilitates data exchange and re-use between different academic fields.
  相似文献   

15.
16.

Purpose

The purpose of the study was to perform a comparative life cycle assessment of current and future electricity generation systems in the Czech Republic and Poland. The paper also outlines the main sources of environmental impact for the different impact categories for the electricity generation technologies analyzed. The analyses covered the years 2000–2050, and were conducted within the framework of the international programme Interreg V-A Czech Republic-Poland, Microprojects Fund 2014–2020 in the Euroregion Silesia.

Methods

Environmental assessment was done using the life cycle assessment (LCA) and ReCiPe Midpoint and Endpoint methods, which allowed the presentation of different categories of environmental impact and damage. The LCA was based on ISO 14040 and ISO 14044, using SimaPro 8.2.3 software with the Ecoinvent 3.2 database. The analyses cover both the current electricity production structures in the Czech Republic and Poland, and the projected energy production.

Results and discussion

The LCA analyses performed for the energy systems under consideration in the Czech Republic and Poland enabled a comparative analysis of current and forecast energy systems in these countries, as well as identification of the main sources of environmental impact. Comparative analysis of the LCA results showed that current and future electricity generation systems in Poland caused higher environmental impact there, than in the Czech Republic.

Conclusions

The assessment of the life cycle of electricity sources showed that the main determinant of the negative impact on the environment of energy systems in both Poland and the Czech Republic was the consumption of solid fuels, and in particular, the consumption of lignite. It is important to highlight that this is the first attempt of a comparative LCA of electricity production in the Czech Republic and Poland. This is also the first approach that contains analyses of the life cycle assessment of both present and future energy systems. The economic assessment and eco-efficiency of current and future electricity generation systems in European Union countries will be addressed in future research.
  相似文献   

17.

Purpose

Introducing a geopolitical-related supply risk (GeoPolRisk) into the life cycle sustainability assessment (LCSA) framework adds a criticality aspect to the current life cycle assessment (LCA) framework to more meaningfully address direct impacts on Natural Resource AoP. The weakness of resource indicators in LCA has been the topic of discussion within the life cycle community for some time. This paper presents a case study on how to proceed towards the integration of resource criticality assessment into LCA under the LCSA. The paper aims at highlighting the significance of introducing the GeoPolRisk indicator to complement and extend the established environmental LCA impact categories.

Methods

A newly developed GeoPolRisk indicator proposed by Gemechu et al., J Ind Ecol (2015) was applied to metals used in the life cycle of an electric vehicle, and the results are compared with an attributional LCA of the same resources. The inventory data is based on the publication by Hawkins et al., J Ind Ecol 17:53–64 (2013), which provides a current, transparent, and detailed life cycle inventory data of a European representative first-generation battery small electric vehicle.

Results and discussion

From the 14 investigated metals, copper, aluminum, and steel are the most dominant elements that pose high environmental impacts. On the other hand, magnesium and neodymium show relatively higher supply risk when geopolitical elements are considered. While, the environmental indicator results all tend to point the same hotspots which arise from the substantial use of resources in the electric vehicle’s life cycle, the GeoPolRisk highlights that there are important elements present in very small amounts but crucial to the overall LCSA. It provides a complementary sustainability dimension that can be added to conventional LCA as an important extension within LCSA.

Conclusions

Resource challenges in a short-term time perspective can be better addressed by including social and geopolitical factors in addition to the conventional indicators which are based on their geological availability. This is more significant for modern technologies such as electronic devices in which critical resources contribute to important components. The case study advances the use of the GeoPolRisk assessment method but does still face certain limitations that need further elaboration; however, directions for future research are promising.
  相似文献   

18.

Purpose

This paper aims to verify whether life cycle assessment (LCA) research can be mainly treated as a kind of pro-environmental behavior due to public environment concerns, or academic and research activities based on scientific traditions.

Methods

This paper uses the international comparisons method for modeling and SPSS 16.0 for data processing. The data in this study were obtained from the Human Development Report by the United Nations Development Programme and the Web of Science by the Institute for Scientific Information.

Results and discussion

Our empirical study shows that the two main factors influencing the outputs per capita of the research articles in LCA in a particular country are the value of Environmental Performance Index, which represents the overall environmental quality, as well as the outputs per capita of the research articles in environmental science and technology. The results of statistical analysis show two J-type curves: with the change of the independent variables, the dependent variable changes in the same direction, but at a rate that is first slow, then fast.

Conclusions

LCA research results from scientific traditions and can only develop based on fundamental research in environmental science and technology. Further, LCA research is a pro-environmental behavior due to actual and objective effects rather than subjective motives as more research on LCA can accompany, even in some degree may lead to better overall environmental qualities. However, although environmental concerns are likely to affect the number of LCA studies as an implicit variable, this has not been empirically confirmed in our optimization model.
  相似文献   

19.

Purpose

The objectives of this study are to evaluate life cycle assessment (LCA) for concrete mix designs containing alternative cement replacement materials in comparison with conventional 100% general use cement concrete and to evaluate the interplay and sensitivity of LCA for four concrete mix designs and six functional units which range in degrees of complexity and variables.

Methods

Six functional units with varying degrees of complexity are included in the analysis: (i) volume of concrete, (ii) volume and 28-day compressive strength, (iii) volume and 28-day rapid chloride permeability (RCP), (iv) volume and binder intensity, (v) volume and a combination of compressive strength and RCP and (vi) volume and a combination of binder intensity and RCP. Four reference flows are included in the analysis: three concrete mix designs containing slag, silica fume and limestone cement as cement replacement and one concrete mix design for conventional concrete.

Results and discussion

All three alternative mix designs were evaluated to have lower environmental impacts compared with the base 100% general use cement and so are considered to be ‘green’ concrete. Similar LCA results were observed for FU1, FU2 and FU4, and relatively similar results were obtained for FU3, FU5 and FU6. LCA conducted with functional units which were a function of durability exhibited markedly different (lower) LCA compared with the functional units that did not capture long-term durability.

Conclusions

Outcomes of this study portray the interplay between concrete mix design materials, choice of functional unit and environmental impact based on LCA. The results emphasize (i) the non-linearity between material properties and environmental impact and (ii) the importance of conducting an LCA with a selected functional unit that captures the concrete’s functional performance metrics specific to its application and expected exposure conditions. Based on this study, it is recommended that a complete LCA for a given concrete mix design should entail examination of multiple functional units in order to identify the range of environmental impacts or the optimal environmental impacts.
  相似文献   

20.

Purpose

One of the main trends in life cycle assessment (LCA) today is towards increased regionalization in inventories and impact assessment methods. LCA studies require the collection of activity data but also of increasingly region-specific background data to accurately depict supply chain processes and enable the application of an increasing number of geographically explicit impact assessment models. This is particularly important for agri-food products. In this review, we assess progress in Portugal towards this goal and provide recommendations for future developments.

Methods

We perform a comprehensive review of available LCA studies conducted for Portuguese agri-food products, in order to evaluate the current state of Portuguese agri-food LCA. Among other issues, we assess availability of data, methods used, level of regionalization, impact assessment model relevance and coherence for inter-product comparability. We also provide conclusions and recommendations based on recent developments in the field.

Results and discussion

We found 22 LCA studies, covering 22 different products. The analysis of these studies reveals limitations in inter-study comparability. The main challenges have to do with a lack of country-specific foreground data sources applied consistently in the studies found, with discrepancies in impact assessment categories, and with the use of simple functional units that may misrepresent the product analyzed.

Conclusions

We conclude that Portuguese agri-food LCA studies do not have a systematic and country-scale approach in order to guarantee regional accuracy and comparability. We propose a research strategy to engage the Portuguese agri-food LCA community in devising a consistent framework before practical application studies are conducted.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号