首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effect of polyamines on the methylation of adenine in 16S rRNA was examined using the purified methylating enzyme. When 23S core particles were used as substrate, the activity was stimulated by Mg2+, Ca2+ and monovalent cations. Even in the presence of optimal concentrations of Mg2+ and NH4+, the addition of 1 mM spermidine stimulated the methylation approximately 1.7-fold. When 30S ribosomal subunits were used as substrate, the rate of methylation was 20% of that of the methylation of 23S core particles. The activity was not influenced significantly by Mg2+, Ca2+ or monovalent cations. The addition of spermidine inhibited the methylation.  相似文献   

2.
We investigated the effect of the exogenous polyamines spermine, spermidine and putrescine on modulation by ATP, K+, Na+, NH4 + and Mg2+ and on inhibition by ouabain of posterior gill microsomal Na+,K+-ATPase activity in the blue crab, Callinectes ornatus, acclimated to a dilute medium (21‰ salinity). This is the first kinetic demonstration of competition between spermine and spermidine for the cation sites of a crustacean Na+,K+-ATPase. Polyamine inhibition is enhanced at low cation concentrations: spermidine almost completely inhibited total ATPase activity, while spermine inhibition attained 58%; putrescine had a negligible effect on Na+,K+-ATPase activity. Spermine and spermidine affected both V and K for ATP hydrolysis but did not affect ouabain-insensitive ATPase activity. ATP hydrolysis in the absence of spermine and spermidine obeyed Michaelis–Menten behavior, in contrast to the cooperative kinetics seen for both polyamines. Modulation of V and K by K+, Na+, NH4 + and Mg2+ varied considerably in the presence of spermine and spermidine. These findings suggest that polyamine inhibition of Na+,K+-ATPase activity may be of physiological relevance to crustaceans that occupy habitats of variable salinity.  相似文献   

3.
The histone lysine methyltransferases catalyze the transfer of methyl groups from S-adenosylmethionine to specific epsilon-N-lysine residues in the N-terminal regions of histones H3 and H4. These enzymes are located exclusively within the nucleus and are firmly bound to chromatin. The chromosomal bound enzymes do not methylate free or nonspecifically associated histones, while histones H3 and H4 within newly synthesized chromatin are methylated. These enzymes can be solubilized by limited digestion (10-16%) of chromosomal DNA from rapidly proliferating rat brain chromatin with micrococcal nuclease. Histone H3 lysine methyltransferase remained associated with a short DNA fragment throughout purification. Dissociation of the enzyme from the DNA fragment with DNAase digestion resulted in complete loss of enzyme activity; however, when this enzyme remained associated with DNA it was quite stable. Activity of the dissociated enzyme could not be restored upon the addition of sheared calf thymus or Escherichia coli DNA. Histone H3 lysine methyltransferase was found to methylate lysine residues in chromosomal bound or soluble histone H3, while H3 associated with mature nucleosomes was not methylated. The histone H4 lysine methyltransferase which was detectable in the crude nuclease digest was extremely labile, losing all activity upon further purification. We isolated a methyltransferase by DEAE-cellulose chromatography, which would transfer methyl groups to arginine residues in soluble histone H4. However, this enzyme would not methylate nucleosomal or chromosomal bound histone H4, nor were methylated arginine nucleosomal or chromosomal bound histone H4, nor were methylated arginine residues detectable upon incubating intact nuclei or chromatin with S-adenosylmethionine.  相似文献   

4.
The megabase-sized length of chromatin is highly relevant to the state of chromatin in vivo, where it is subject to a highly crowded environment and is organized in topologically associating domains of similar dimension. We developed an in vitro experimental chromatin model system reconstituted from T4 DNA (approximately 166 kbp) and histone octamers and studied the monomolecular compaction of this megabase-sized chromatin fiber under the influence of macromolecular crowding. We used single-molecule fluorescence microscopy and observed compaction in aqueous solutions containing poly(ethylene glycol) in the presence of monovalent (Na+ and K+) and divalent (Mg2+) cations. Both DNA and chromatin demonstrated compaction under comparable conditions in the presence of poly(ethylene glycol) and Na+ or Mg2+ salt. However, the mechanism of the compaction changed from a first-order phase transition for DNA to a continuous folding for megabase-sized chromatin fibers. A more efficient and pronounced chromatin compaction was observed in the presence of Na+ compared to K+. A flow-stretching technique to unfold DNA and chromatin coils was used to gain further insight into the morphology of partially folded chromatin fibers. The results revealed a distribution of partially folded chromatin fibers. This variability is likely the result of the heterogeneous distribution of nucleosomes on the DNA chain. The packaging of DNA in the form of chromatin in the crowded nuclear environment appears essential to ensure gradual conformational changes of DNA.  相似文献   

5.
Dissociation of the (Na++K+)-ATPase ouabain complex, formed presence of Mg2+ and inorganic phosphate (Complex II), is inhibited by Mg2+ (21–45%) and the alkali cations Na+ (25–59%) and K+ (27–75%) when kidney cortex tissue (bovine, rabbit, guinea pig) is the enzyme source. Choline chloride at 200 mM, equivalent to the highest concentration of NaCl tested, does not inhibit. Dissociation of Complex II from brain cortex (bovine, rat, rabbit) or heart muscle (rabbit) is much less inhibited: 0–11% by Na+ and 11–19% by K+. The degree of inhibition is not directly related to the size of the dissociation rate constant (k?) of the various complexes, but rather to the extent of interaction between the cation and ouabain binding sites for these tissues.Inhibition curves for Na+ and K+ are sigmoidal. Half-maximal inhibition for rabbit brain and kidney cortex is at 30–40 mM Na+ and 6–10 mM K+, and the maximally inhibitory concentrations are 50–150 and 15–20 mM, respectively. Maximal inhibition by Na+ or K+ for these tissues is the same. For guinea pig kidney cortex Na+ and K+ are almost equally effective, but 150 mM K+ or 200 mM Na+ are still not saturating, and inhibition curves indicate high- and low-affinity binding sites for the alkali cations.The inhibition curve for Mg2+ is not sigmoidal. In the kidney preparations Mg2+ inhibits half-maximally at 0.4-0.5 mM, maximally at 1–3 mM. Maximal inhibition by Mg2+ is higher than by Na+ or K+ for rabbit cortex and lower for guinea pig kidney cortex.There is no competition or additivity among the cations, indicating the existence of different binding sites for Mg2+ and the alkali cations.Complex II differs in stability, in the extent of inhibition, in the dependence of inhibition on the cation concentration and in the absence of antagonism between Na+ and K+, from the ouabain complex formed via phosphorylation by ATP (Complex I). This indicates that the phosphorylation states for the complexes are clearly different.  相似文献   

6.
Addition of LiCl (1–25 mM) to serum-free cultures of MHA hamster thymocytes, lymph node cells, or splenocytes stimulated with concanavalin A had a biphasic effect on [3H]thymidine incorporation. These concentrations of LiCl enhanced stimulation of [3H]thymidine incorporation by suboptimal levels of concanavalin A but inhibited stimulation of optimal and supraoptimal concentrations of concanavalin A. This effect was specific for Li+ since it was not observed when similar concentrations of Na+, K+, or Mg2+ were added to cultures stimulated by concanavalin A. The inhibitory effect of LiCl on concanavalin A stimulation was not reversed by addition of Na+, Ca2+, Mg2+, or Ca2+ + Mg2+ to the cultures. Significant reversal of LiCl inhibition of stimulation was observed when KCl was added to the cultures. However none of the ions tested blocked the Li-induced enhancement of [3H]thymidine incorporation in the presence of suboptimal concentrations of concanavalin A.  相似文献   

7.
The ion atmosphere created by monovalent (Na+) or divalent (Mg2+) cations surrounding a B‐form DNA duplex were examined using atomistic molecular dynamics (MD) simulations and the nonlinear Poisson‐Boltzmann (PB) equation. The ion distributions predicted by the two methods were compared using plots of radial and two‐dimensional cation concentrations and by calculating the total number of cations and net solution charge surrounding the DNA. Na+ ion distributions near the DNA were more diffuse in PB calculations than in corresponding MD simulations, with PB calculations predicting lower concentrations near DNA groove sites and phosphate groups and a higher concentration in the region between these locations. Other than this difference, the Na+ distributions generated by the two methods largely agreed, as both predicted similar locations of high Na+ concentration and nearly identical values of the number of cations and the net solution charge at all distances from the DNA. In contrast, there was greater disagreement between the two methods for Mg2+ cation concentration profiles, as both the locations and magnitudes of peaks in Mg2+ concentration were different. Despite experimental and simulation observations that Mg2+ typically maintains its first solvation shell when interacting with nucleic acids, modeling Mg2+ as an unsolvated ion during PB calculations improved the agreement of the Mg2+ ion atmosphere predicted by the two methods and allowed for values of the number of bound ions and net solution charge surrounding the DNA from PB calculations that approached the values observed in MD simulations. © 2014 Wiley Periodicals, Inc. Biopolymers 101: 834–848, 2014.  相似文献   

8.
Erratum     
Abstract

The condensation and the precipitation of rat liver chromatin upon addition of spermine4+, spermidine3+, hexamminecobalt(III)3+ and Mg2+ cations have been studied using solubility, fluorescence, circular dichroism, melting curves, electric dichroism and spermidine binding measurements, made on both soluble and precipitated complexes. The soluble complexes obtained with tetra- and trivalent cations were depleted from all histones and enriched in other proteins, particularly high mobility group proteins 1 and 2, which brings about an important enhancement of tryptophan fluorescence without modification of its two lifetimes 5.1 and 1.2 ns. In the precipitates the non-histone proteins are eliminated. Under precipitation by Mg2+ ions, the distribution of proteins remains practically unchanged. The electric dichroism and the melting curves indicate that the soluble complexes between polyamines and chromatin undergo important condensation and, at high ratios of cation over phosphate, are constituted by heterogeneous assemblies of non-histone proteins and DNA. On the contrary, the insoluble complexes seem to retain the main features of original chromatin. Precipitation by Mg2+ ions reveal much less drastic changes than those produced by polyamines. Precipitation by spermidine occurs when one cation is bound per eight nucleotides, which in addition to the histone positive charges brings about a complete neutralization of chromatin phosphates.  相似文献   

9.
Nucleic acids generally reside in cellular aqueous solutions with mixed divalent/monovalent ions, and the competitive binding of divalent and monovalent ions is critical to the structures of nucleic acids because of their polyanionic nature. In this work, we first proposed a general and effective method for simulating a nucleic acid in mixed divalent/monovalent ion solutions with desired bulk ion concentrations via molecular dynamics (MD) simulations and investigated the competitive binding of Mg2+/Na+ ions to various nucleic acids by all-atom MD simulations. The extensive MD-based examinations show that single MD simulations conducted using the proposed method can yield desired bulk divalent/monovalent ion concentrations for various nucleic acids, including RNA tertiary structures. Our comprehensive analyses show that the global binding of Mg2+/Na+ to a nucleic acid is mainly dependent on its structure compactness, as well as Mg2+/Na+ concentrations, rather than the specific structure of the nucleic acid. Specifically, the relative global binding of Mg2+ over Na+ is stronger for a nucleic acid with higher effective surface charge density and higher relative Mg2+/Na+ concentrations. Furthermore, the local binding of Mg2+/Na+ to a phosphate of a nucleic acid mainly depends on the local phosphate density in addition to Mg2+/Na+ concentrations.  相似文献   

10.
This study is concerned with the isolation and characterization of the enzyme, S-adenosylmethionine:ribosomal ribonucleic acid-adenine (N6−) methyl-transferase [rRNA-adenine (N6-) methylase] of Escherichia coli strain B, which is responsible for the formation of N6-methyladenine moieties in ribosomal ribonucleic acids (rRNA). A 1,500-fold purified preparation of the species-specific methyltransferase methylates a limited number of adenine moieties in heterologous rRNA (Micrococcus lysodeikticus and Bacillus subtilis) and methyl-deficient homologous rRNA. The site recognition mechanism does not require intact 16 or 23S rRNA. The enzyme does not utilize transfer ribonucleic acid as a methyl acceptor nor does it synthesize 2-methyladenine or N6-dimethyladenine moieties. Mg2+, spermine, K+, and Na+ increase the reaction rate but not the extent of methylation; elevated concentrations of the cations inhibit markedly. The purified preparations utilize 9-β-ribosyl-2,6-diaminopurine (DAPR) as a methyl acceptor with the synthesis of 9-β-ribosyl-6-amino-2-methylaminopurine. A comparison of the two activities demonstrated that one methyltransferase is responsible for the methylation of both DAPR and rRNA. This property provides a sensitive assay procedure unaffected by ribonucleases and independent of any specificity exhibited by rRNA methyl acceptors.  相似文献   

11.
At 0°C, when Na+ was the only cation present in the incubation medium, increasing the Na+ concentration from 3 to 10 mM enhanced the affinity of [3H]l-[2-(di-phenylmethoxy)ethyl]-4-(3-phenyl-2-propenyl)piperazine ([3H]GBR 12783) for the specific binding site present in rat striatal membranes without affecting the 5max. For higher Na+ concentrations, specific binding values plateaued and then slightly decreased at 130 mM Na+. In a 10 mM Na+ medium, the KD and the Bmax were, respectively, 0.23 nM and 12.9 pmol/mg of protein. In the presence of 0.4 nM [3H]GBR 12783, the half-maximal specific binding occurred at 5 mM Na+. A similar Na+ dependence was observed at 20°C. Scatchard plots indicated that K+, Ca2+, Mg2+, and Tris+ acted like competitive inhibitors of the specific binding of [3H]GBR 12783. The inhibitory potency of various cations (K+, Ca2+, Mg2+, Tris+, Li+ and choline) was enhanced when the Na+ concentration was decreased from 130 to 10 mM. In a 10 mM Na+ medium, the rank order of inhibitory potency was Ca2+ (0.13 mM) > Mg2+ > Tris+ > K+ (15 mM). The requirement for Na+ was rather specific, because none of the other cations acted as a substitute for Na+. No anionic requirement was found: Cl-, Br-, and F- were equipotent. These results suggest that low Na+ concentrations are required for maximal binding; higher Na+ concentrations protect the specific binding site against the inhibitory effect of other cations.  相似文献   

12.
13.
The specific activity of (Na+ + Mg2+)-dependent ATPase is three times greater in the microsomes of sea-water eels than in freshwater eels; the specific activity is one quarter of that of (Na+ + K+ + Mg2+)-dependent ATPase in both cases.(Na+ + Mg2+)-dependent ATPase is optimally active in a medium containing 8 mM NaCl, 4 mM MgCI2, 4 mM ATP, pH 8.8 and at 30 °C; the enzyme is inhibited by ouabain, by NaCl concentrations > 100 mM and by treatment with urea.It is concluded that the (Na+ + Mg2+)-dependent ATPase activity of gills arises from the presence of a (Na+ + K+ + Mg2+)-dependent ATPase.  相似文献   

14.
《Process Biochemistry》2004,39(9):1145-1150
Peptidoglycan (PG), the major part of the cell wall (CW) of Micromonospora echinospora var 49–925, could bind about 90% of the total gentamicin (GM) absorbed on the CW and when the concentrations of PG and GM were 6 mg/ml and 500 U/ml, respectively, the amount of bound GM was approximately 88 000 U/g of PG (dry weight) and no free GM was detected in the solution. Metal ions were used to release GM from PG. Mg2+ and Na+ restrained intensively the binding of GM at GM concentration less than 1000 U/ml. Amine could compete with GM for the binding sites as well. About 50% increase of GM titre was achieved when Mg2+ or Na+ was supplemented to the fermentation broth.  相似文献   

15.
A method is described for purification of (N+, K+)-ATPase which yields approximately 60 mg of enzyme from 800 g of cardiac muscle with specific activities ranging from 340 to 400 μmol inorganic phosphate/mg protein per h (units/mg). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated the presence of a major 94 000 dalton polypeptide and four or five lesser components, one of which was a glycoprotein with an apparent molecular weight of 58 000. The enzyme preparation bound 600–700 pmol of [3H]ouabain/mg protein when incubated in the presence of either Mg2+ plus Pi or Mg2+ plus ATP plus Na+, and incorporated more than 600 pmol 32P/mg protein when incubated with γ-32P-labeled ATP in the presence of Mg2+ and Na+. The preparation is approximately 35% pure.  相似文献   

16.
17.
H Krakauer 《Biopolymers》1972,11(4):811-828
The heats of binding of Mg++ ions to poly A, poly U, and to their complexes, in the presence of Na+ ions, have been measurd calorimetrically. In all cases the heat, ΔH(θ), exhibitis a distinct dependence on the extent of binding, θ, and in the cases of poly A and poly U also on the Na+ concentration. The values of ΔH(θ) range from +2 to +3 kcal/mole of Mg++ bound at θ = 0 to 1.3 kcal/mole at θ = 0.5 except in poly A where at θ = 0 ΔH(θ) = ?2 to ?3 kcal/mole. This is interpreted as being due to a facilitation of base stacking by the binding of Mg++. The extent of facilitation is consistent with current estimates of base stacking. A similar effect but of much smaller magnitude is believed to obtain in poly A poly U. An interpretation of the dependence of ΔH(θ) on θ in terms of simple electrostatic interactions, but neglecting solvent effects, was attempted and found to be inadequate.  相似文献   

18.
The inhibition of NaK-ATPase (EC 3.6.1.3) from human red cells by Mg2+ is markedly dependent on the relative concentrations of Na+ and K+. Inhibition increases with increasing K+ and decreases with increasing Na+. The inhibition appears to be a combined effect of Mg2+ and K+ at sites distinct from the sites at which these cations activate the enzyme. The kinetics of activation of the enzyme by Na+ with inhibitory levels of Mg2+ and K+ are biphasic, indicating both low and high affinity Na+ sites. At noninhibitory levels of Mg2+ and K+ only high affinity Na+ sites are seen. The results are inconsistent with any model in which Mg2+ and K+ compete with Na+ at a single site. A kinetic model is proposed to explain the mechanism of inhibition by Mg2+ and K+.  相似文献   

19.
(1) The fluorescence of eosin Y in the presence of (Na+ + K+)-ATPase is enhanced by Mg2+. The enhancement by Mg2+ is larger than that obtained with Na+ (Skou, J.C. and Esmann, M. (1981) Biochim. Biophys. Acta 647, 232–240). Mg2+ shifts the excitation maximum from 518 to 524 nm, the emission maximum from 538 to 542 nm. Also a shoulder appears at about 490 nm on the excitation curve, as was also observed with Na+. (2) The Mg2+-dependent enhancement of fluorescence can be reversed by K+ as well as by ATP. In the presence of Mg2+ + Pi (i.e. under conditions of phosphorylation), the fluorescence enhancement can be reversed by ouabain. With Mg2+ and a low concentation of K+ (i.e. conditions for vanadate binding), the enhancement of fluorescence can be reversed by vanadate. (3) There is a low-affinity binding of eosin which increases with the Mg2+ concentration. This is observed as a slight increase in the fluorescence when the excitation wavelength is above 520 nm. The low-affinity binding is K+-, ATP-, ouabain- and vanadate-insensitive. (4) Scatchard analysis of the binding experiments suggests that there are two high-affinity eosin-binding sites per 32P-labelling site in the presence of 5 mM Mg2+ both of which are ouabain-, vanadate- and ATP-sensitive. With 5 M Mg2+ + 0.25 Pi, the Kd values are 0.14 μM and 1.3 μM, respectively. With 5 mM Mg2+, 150 mM Na+, the Kd values are 0.45 μM and 3.2 μM, respectively. With 5 mM Mg2+, the addition of K+ gives a pronounced decrease in affinity but does not decrease the number of binding sites (which remains at two per 32P-labelling site). With 5 mM Mg2+ + 150 mM K+, the affinities of the two binding sites become identical, at a Kd of 17 μM. (5) The rate of conformational transitions was measured using the stopped-flow method. The rate of the transition from the Mg2+-form to the K+-form is high. Oligomycin has only a small (if any) effect on the rate. Addition of Na+ in the presence of Mg2+ does not appreciably change the rate of conversion to the K+-form, giving a rate constant of about 110 s?. However, the addition of oligomycin in the presence of Mg2+ + Na+ had a profound effect: the rate of conversion to the K+-form was decreased by a factor of 2000 to about 0.063 s?1. This suggests that the conformation with Mg2+ alone is different from the conformation with Na+ alone. (6) The effects of K+, ouabain, vanadate and ATP on the high-affinity binding of eosin suggest that the two eosin molecules bound per 32P-labelling site are bound to ATP sites.  相似文献   

20.
Paramecium tetraurelia responds to extracellular GTP (≥ 10 nm) with repeated episodes of prolonged backward swimming. These backward swimming events cause repulsion from the stimulus and are the behavioral consequence of an oscillating membrane depolarization. Ion substitution experiments showed that either Mg2+ or Na+ could support these responses in wild-type cells, with increasing concentrations of either cation increasing the extent of backward swimming. Applying GTP to cells under voltage clamp elicited oscillating inward currents with a periodicity similar to that of the membrane-potential and behavioral responses. These currents were also Mg2+- and Na+-dependent, suggesting that GTP acts through Mg2+-specific (I Mg) and Na+-specific (I Na) conductances that have been described previously in Paramecium. This suggestion is strengthened by the finding that Mg2+ failed to support normal behavioral or electrophysiological responses to GTP in a mutant that specifically lacks I Mg (``eccentric'), while Na+ failed to support GTP responses in ``fast-2,' a mutant that specifically lacks I Na. Both mutants responded normally to GTP if the alternative cation was provided. As I Mg and I Na are both Ca2+-dependent currents, the characteristic GTP behavior could result from oscillations in intracellular Ca2+ concentration. Indeed, applying GTP to cells in the absence of either Mg2+ or Na+ revealed a minor inward current with a periodicity similar to that of the depolarizations. This current persisted when known voltage-dependent Ca2+ currents were blocked pharmacologically or genetically, which implies that it may represent the activation of a novel purinergic-receptor–coupled Ca2+ conductance. Received: 28 October 1996/Revised: 24 December 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号