首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Plasma from BALB/c mice bled 90 minutes after allogeneic lymphocyte injection significantly rises glucose induced insulin secretion. This rise is observed in pancreas either from non-treated or from allogeneized mice. This rise is time and dose-dependent. An 1/40 dilution is enough to bring about a significant increase on insulin secretion. This effect is seen when mice are bled between 60 and 180 minutes after injection with a maximum effect at 90-120 minutes. Plasma from BALB/c mice injected with C57BL/6 J lymphocytes rises insulin secretion from BALB/c, C57BL/6 J, C3h and C57BL/KsJ mice pancreas. Plasma from streptozotocin diabetic BALB/c mice and from genetically diabetic C57BL/KsJ mdb-mdb mice injected with allogeneic lymphocytes stimulates glucose induced insulin secretion but to a lesser extent than plasma from normal non-diabetic mice does.  相似文献   

2.
The concentration of plasma glucose in insulin deprived pancreatectomized dogs was decreased from the basal 385 +/- 44 to 65 +/- 12 mg/dL by the infusion of 7 mU X kg-1 X min-1 insulin. During the infusion, the plasma concentration of immunoreactive glucagon (IRG) did not change and hepatic glucose production was decreased. This is in contrast to earlier findings in alloxan diabetic dogs in which plasma IRG decreased in hypoglycaemia. The hypothesis is put forward that, in contrast to pancreatic alpha cells in which the effect of insulin prevails, neither insulin nor a decrease in the ambient concentration of glucose exerts any effect on the secretion of glucagon from extrapancreatic alpha cells.  相似文献   

3.
Hon-Chi was used for anti-hyperglycemic activity screening in streptozotocin-induced diabetic rats (STZ-diabetic rats) in an attempt to develop new substances for handling diabetes. Mandarin Hon-Chi is red yeast rice fermented with Monascus pilous and Monascus purpureus. Single oral administration of Hon-Chi decreased plasma glucose in STZ-diabetic rats in a dose-dependent manner from 50 mg/kg to 350 mg/kg. Similar treatment with Hon-Chi also lowered the plasma glucose in normal rats as effectively as that produced in STZ-diabetic rats. In addition, oral administration of Hon-Chi at the highest dose (350 mg/kg) attenuated the elevation of plasma glucose induced by an intravenous glucose challenge test in normal rats. Moreover, mRNA levels of phosphoenolpyruvate carboxykinase (PEPCK) in liver from STZ-diabetic rats were reversed in a dose-dependent manner by the repeated oral treatment of Hon-Chi three times daily for two weeks. Otherwise, hyperphagia in STZ-diabetic rats was markedly reversed by similar repeated treatment of Hon-Chi. The obtained results suggest that oral administration of Hon-Chi could decrease hepatic gluconeogenesis to lower plasma glucose in diabetic rats lacking insulin.  相似文献   

4.
This study examines the early hepatic biochemical and ultrastructural responses to insulin replacement in streptozotocin-diabetic rats and insulin withdrawal from insulin-maintained diabetic rats. Insulin administration rapidly lowered plasma glucose and the elevated glucose-6-phosphatase (G-6-Pase) specific activity of the diabetic rats. However, hepatic glycogen did not increase until after 3 hr of insulin treatment. Hepatic ultrastructure responded to insulin replacement after the decline in glucose and G-6-Pase. This was seen in periportal hepatocytes as a reduction in the close association between smooth endoplasmic reticulum (SER) and glycogen particles in the diabetic animals. The treated rats showed hepatic SER restricted to the periphery of glycogen masses, as is characteristic of these cells from normal rats, in many cells by 6 hr and all cells by 18 hr. Insulin withdrawal from insulin-treated diabetic rats elicited nearly a total reversal of the above events. Plasma insulin declined to a value half that of the normal rats by 6 hr after withdrawal; concurrently, plasma glucose rose sharply to hyperglycemic values as hepatic glycogen content dropped. Following the rise in plasma glucose and fall in glycogen content, G-6-Pase specific activity increased and by 16 hr reached the high values characteristic of the diabetic animal. Hepatic ultrastructure was also changed as evidenced by an intrusion of elements of the SER into the dense glycogen masses; the result was dispersed glycogen closely associated with SER as seen in the diabetic animal. It is concluded that the hepatic response to insulin replacement in diabetic animals and diabetic onset in insulin-withdrawn animals is rapid and occurs through defined stages.  相似文献   

5.
Six insulin-requiring diabetics were studied after insulin had been withheld for 24 hours. On three separate occasions each received a two-hour infusion of insulin at a low dose (2·6 U/h) and a high dose (10·6 U/h) and an infusion of saline as control. The rates of production and utilisation of glucose were measured isotopically. The rate of fall of plasma glucose concentration was faster on the high-dose infusion of insulin than on the low, whereas the fall in plasma free fatty acids, glycerol, and keton bodies was the same on both insulin infusions. The mechanism whereby the two rates of insulin administration lowered plasma glucose concentration differed: during the low-dose infusion the decrease in the glucose concentration was produced entirely by a fall of hepatic glucose output, whereas during the high-dose insulin infusion the glucose concentration fell because both the rate of glucose production fell and the rate of glucose utilisation rose. In all experiments there was a direct relation between a fall in serum potassium concentration and the fall in plasma glucose concentration irrespective of the mechanism that reduced the glucose concentration.These results indicate that in uncontrolled diabetics low-dose insulin infusions lower the blood glucose concentration entirely by reducing glucose production from the liver and that the effect of insulin on potassium transport is independent of its effect on glucose uptake.  相似文献   

6.
Thyroparathyroidectomy (TPTX) caused a significant increase in serum glucose and a corresponding fall in serum calcium in both fed and fasted rats. The increase in serum glucose, induced by TPTX, was markedly potentiated by a single intraperitoneal administration of calcium (2 mg/100 g BW) which caused a significant elevation of serum calcium in thyroparathyroidectomized rats. Parathyroid hormone (PTH; 20 U/100 g BW) administered subcutaneously to thyroparathyroidectomized rats, caused a significant decrease in serum glucose (0.1 g/100 g BW) to sham-operated rats significantly increased both serum glucose and insulin. The rise of serum glucose produced by a glucose load was markedly potentiated by TPTX, but the increase in serum insulin was not promoted significantly. The administration of PTH decreased both serum glucose and insulin levels increased by a glucose load to thyroparathyroidectomized rats, in a dose-dependent manner. The administration of calcitonin (80 MRC mU/100 g BW) significantly prevented the effect of PTH to decrease serum glucose after a glucose load to thyroparathyroidectomized rats, and calcitonin increased serum insulin. These results suggest that the effect of PTH on serum glucose does not involve insulin secretion.  相似文献   

7.
It is known from studies previously conducted in this laboratory that an iv injection of ovine growth hormone (GH, 100 micrograms/kg BW) or an equimolar amount of somatostatin (SRIF, 7.5 micrograms/kg BW), given to normal conscious dogs into a saphenous vein, leads to a significant increase in hepatic portal plasma serotonin and a simultaneous decrease in the concentrations of dopamine, norepinephrine and epinephrine. The changes take place within 12 minutes after the injection and are observed only in the portal circulation. The purpose of the present experiment was to investigate whether or not similar results could be obtained in diabetic animals. Mongrel dogs were rendered diabetic by surgical pancreatectomy and fitted with an indwelling hepatic portal catheter. Radioenzymatic methods were employed for quantitative measurements of plasma free serotonin and catecholamines. No response was noted when the same type of experiments as those conducted in normal dogs were now carried out in trained, fully conscious totally pancreatectomized dogs deprived of exogenous insulin supply. When the same animals were given an injection into a peripheral vein of 50 mU/kg BW regular crystalline insulin (a small dose that affected neither plasma glucose nor biogenic amine levels) 10 minutes prior to the administration of the other hormones, the usual response to both GH and SRIF was restored, i.e. the data were comparable to those of normal dogs. It is concluded that the GH/SRIF effect on gut biogenic amines is insulin dependent.  相似文献   

8.
To investigate the response of extrapancreatic glucagon to intraluminal stimuli, nutrients were administered to normal and pancreatectomized dogs through a stomach tube in a fully conscious state after an overnight fast. Plasma immunoreactive glucagon was determined with antisera specific and nonspecific to glucagon and was designated as IRG and total IRG, respectively. Oral glucose load elicited a decrease in plasma IRG and a remarkable rise of plasma total IRG in a group of 6 pancreatectomized dogs, as in the control dogs. When arginine was given, both plasma IRG and total IRG significantly increased in a group of 5 pancreatectomized dogs, while only total IRG rose significantly in the normal control dogs. Butter load did not reveal any changes in plasma IRG and total IRG in a group of 5 pancreatectomized dogs, whereas only total IRG increased in the normal control dogs. It is concluded that extrapancreatic glucagon responds to intraluminal administration of nutrients, as pancreatic glucagon does. In addition, gut glucagon-like immunoreactivity increased following glucose or arginine ingestion in pancreatectomized dogs. Furthermore, the failure in response of plasma IRG and total IRG to butter load in pancreatectomized animals suggests that its intraluminal hydrolysis is important in the secretion of extrapancreatic immunoreactive glucagon.  相似文献   

9.
Infusion of oxytocin into normal dogs increases plasma levels of insulin and glucagon and glucose production and uptake. To determine whether infused oxytocin also increases glucagon secretion from extrapancreatic sites, pancreatectomized dogs, off insulin for 18 hr, were infused with oxytocin and plasma glucagon, and glucose production and uptake were measured using the [6-3H]glucose primer-infusion technique. The diabetic dogs, in the control period, had elevated plasma glucose and glucagon levels, an increased rate of glucose production, and a relative decrease in glucose uptake (decreased clearance). Infusion of oxytocin (500 microU/kg/min) caused a rise in plasma glucagon and glucose levels, increased glucose production, and further decreased glucose clearance. It is concluded that oxytocin can stimulate secretion of extrapancreatic glucagon, which contributes to the increased glucose production.  相似文献   

10.
Infusion of oxytocin (OT) into normal dogs, in doses which produced plasma levels of OT in the physiological range, has been shown to increase plasma levels of glucose, insulin and glucagon and increase rates of glucose production and uptake. This study sought to determine whether there was a correlation between these metabolic effects and the oxytocic potency of four less potent oxytocic analogues when infused into normal dogs. The rank order of oxytocic potency of all 4 correlated well with the rise in plasma glucose levels, and in 3 of the 4 with the rise in plasma insulin levels. An antagonist of the oxytocic effect of OT suppressed the usual OT-induced rise in plasma glucose, insulin and glucagon as well as the increased glucose production and uptake. Arginine vasopressin (AVP) infusion, which by itself did not produce any metabolic effects, blocked completely the effects of OT infusion to raise plasma glucose and insulin levels and increase glucose production and uptake. The data suggest that the metabolic effects of OT in the dog are mediated by OT receptors that are similar to those producing the oxytocic effects. Whether the inhibition by AVP of the metabolic and hormonal effects of OT occurs at the receptor or post receptor level or via other mechanisms remains to be determined.  相似文献   

11.
Studies were carried out in conscious dogs in which the effect of intravenous somatostatin on immunoreactive gastric inhibitory polypeptide (IR-GIP) release was investigated. In addition, the inhibitory action of somatostatin on the insulin response to pure porcine GIP was assessed. Intravenous administration of somatostatin resulted in a delayed IR-GIP and immunoreactive insulin (IRI) response to oral glucose. Somatostatin also delayed the IR-GIP response to the ingestion of fat. In both types of experiments, initial depression of IRI levels was followed by a sharp rise in IRI release. Intravenous infusion of somatostatin produced 80% inhibition of the IRI response to pure porcine GIP. It was concluded that somatostatin inhibits the physiological release of IR-GIP and the insulinotropic action of exogenous porcine GIP.  相似文献   

12.
Important role of glucagon during exercise in diabetic dogs   总被引:2,自引:0,他引:2  
To define the role of immunoreactive glucagon (IRG) during exercise in diabetes, 12 insulin-deprived alloxan-diabetic (A-D) dogs were run for 90 min (100 m/min, 12 degrees) with or without somatostatin (St 0.5 microgram . kg-1 . min-1). Compared with normal dogs, A-D dogs were characterized by similar hepatic glucose production (Ra), lower glucose metabolic clearance, and higher plasma glucose and free fatty acid levels during rest and exercise. In A-D dogs IRG was greater at rest and exhibited a threefold greater exercise increment than controls, whereas immunoreactive insulin (IRI) was reduced by 68% at rest but had similar values to controls during exercise. Basal norepinephrine, epinephrine, cortisol, and lactate levels were similar in normal and A-D dogs. However, exercise increments in norepinephrine, cortisol, and lactate were higher in A-D dogs. When St was infused during exercise in the A-D dogs, IRG was suppressed by 432 +/- 146 pg/ml below basal and far below the exercise response in A-D controls (delta = 645 +/- 153 pg/ml). IRI was reduced by 1.8 +/- 0.2 microU/ml with St. With IRG suppression the increase in Ra seen in exercising A-D controls (delta = 4.8 +/- 1.6 mg . kg-1 . min-1) was virtually abolished, and glycemia fell by 104 to 133 +/- 37 mg/dl. Owing to this decrease in glycemia, the increase in glucose disappearance was attenuated. Despite the large fall in glucose during IRG suppression, counterregulatory increases were not excessive compared with A-D controls. In fact, as glucose levels approached euglycemia, the increments in norepinephrine and cortisol were reduced to levels similar to those seen in normal exercising dogs. In conclusion, IRG suppression during exercise in A-D dogs almost completely obviated the increase in Ra, resulting in a large decrease in plasma glucose. Despite this large fall in glucose, there was no excess counterregulation, since glucose concentrations never reached the hypoglycemic range.  相似文献   

13.
Oxytocin (OT) infusion in normal dogs increases plasma insulin and glucagon levels and increases rates of glucose production and uptake. The purpose of this study was to determine whether the effects of OT on glucose metabolism were direct or indirect. The studies were carried out in normal, unanesthetized dogs in which OT infusion was superimposed on infusion of either somatostatin, which suppresses insulin and glucagon secretion, or clonidine, which suppresses insulin secretion only. Infusion of 0.2 microgram/kg/min of somatostatin suppressed basal levels of plasma insulin and glucagon and inhibited the OT-induced rise of these hormones by about 60-80% of that seen with OT alone. The rates of glucose production and uptake by tissues, measured with [6-3H] glucose, were significantly lower than those seen with OT alone, and the rise in glucose clearance was completely inhibited. Clonidine (30 micrograms/kg, sc), given along with an insulin infusion to replace basal levels of insulin, completely prevented the OT-induced rise in plasma insulin and markedly reduced the glucose uptake seen with OT alone, but did not reduce the usual increase in plasma glucose and glucagon levels or glucose production. To determine whether the OT-induced rise in plasma insulin was in response to the concomitant increase in plasma glucose, similar plasma glucose levels were established in normal dogs by a continuous infusion of glucose and an OT infusion was superimposed. OT did not raise plasma glucose levels further, but plasma insulin levels were increased, indicating that OT can stimulate insulin secretion independently of the plasma glucose changes. Studies by others have shown that the addition of OT to pancreatic islets or intact pancreas can stimulate insulin and glucagon secretion, indicating a direct effect. Our studies agree with that and suggest that in vivo, OT raises plasma insulin levels, at least in part, through a direct action on the pancreas. These studies also show that OT increases glucose production by increasing glucagon secretion and, in addition, a direct effect of OT on glucose production is likely. The OT-induced increase in glucose uptake is mediated largely by increased insulin secretion.  相似文献   

14.
Two hours after birth 30 normal infants had a fall in blood glucose of 20·6 mg/100 ml and a rise of plasma pancreatic glucagon of 50·7 pg/ml. Fifteen infants of diabetic mothers treated with insulin had a much greater fall in blood glucose of 77·5 mg/100 ml and a smaller rise of glucagon of 20·9 pg/ml. By comparison 14 small-for-dates infants, who are also prone to hypoglycaemia, had a blood glucose fall of 32·8 mg/100 ml and a larger rise of pancreatic glucagon of 96·0 pg/ml. It is suggested that the impaired pancreatic glucagon rise in the infants of diabetic mothers may be a significant factor in their hypoglycaemia.  相似文献   

15.
Estimation of plasma glucose and immunoreactive insulin concentrations in normal subjects after an overnight fast showed that subjects with high basal plasma glucose levels tended to have high plasma insulin concentrations. A similar correlation between glucose and insulin levels was seen in patients with obesity and various endocrine disorders. The suppression of plasma insulin levels associated with hypoglycaemia was used to derive an “amended insulin-glucose ratio,” which appeared to be a good discriminant for the diagnosis of insulinomas. In normal subjects the ratio was less than 30 μU insulin/mg glucose, in obese subjects less than 50 μU/mg, and most of the patients with insulinomas had values over 200 μU/mg.  相似文献   

16.
The effects of infusion of glucosamine on immunoreactive glucagon (IRG) and insulin (IRI) secretion were studied in dogs and ducks. During systemic infusion of glucosamine, hyperglycemia developed and insulin secretion was inhibited in both species. An immediate and sustained elevation of peripheral IRG levels was induced in ducks but a transient rise, detectable only in the pancreatic vein blood, was provoked in dogs. Suppression of insulin release and stimulation of glucagon release may be mediated by the inhibition of glucose utilization in beta- and alpha-cells. The very prompt response of IRG in ducks may imply that glucosamine has a specific stimulating effect on the alpha-cells of ducks. Intrapancreatic administration of glucosamine in dogs, however, failed to elicit the rise of IRG, although insulin secretion was inhibited. Thus, it is suggested that the systemic administration of glucosamine in dogs may stimulate IRG secretion by some indirect effect. In one dog, however, a sustained rise of the pancreatic vein IRG was observed. Thus, the possibility cannot be ruled out that the difference in IRG response to glucosamine in dogs and ducks is quantitative rather than qualitative. Glucagon release by glucosamine may provide an additional factor to the hyperglycemic effect of glucosamine, in addition to its effect to suppress insulin release as well as its direct inhibitory effect on glucose utilization in tissues.  相似文献   

17.
Previous work by other authors has shown hat insulin administration increases brain tryptophan levels and serotonin (5–HT) metabolism. The present study partially replicates these results and tests whether these effects could be due to insulin-induced hypoglycemic stress, since stressers such as immobilization or food deprivation also increase brain tryptophan and 5-HT metabolism. Ingestion of a dextrose solution by rats administered insulin (2 I.U./kg) prevents the extreme fall in blood glucose concentration and rise in plasma corticosterone following insulin injections alone. This treatment, however, produces a larger increase in brain tryptophan (30%) than insulin-injected rats allowed only tap water. The greater accumulation of brain tryptophan may reflect an additive effect of the endogenously released insulin to that exogenously administered, since ingestion of the dextrose solution could trigger insulin secretion. In addition, brain tryptophan and 5-HT metabolism were measured in streptozotocin-diabetic rats maintained on several different feeding schedules to control for the effects of hyperphagia. All groups of diabetics showed significant decreases of approx 30% in brain tryptophan concentrations, while 5-HT metabolism was unchanged. This deficit in brain tryptophan is reversed within 2 h after insulin administration (2 I.U./kg). These results indicate that changes in brain tryptophan and 5-HT metabolism following insulin injections are not due to hypoglycemic stress, and that brain tryptophan is low in diabetics but increases above normal after administration of insulin. The results are discussed with respect to the effects of insulin on plasma levels of the neutral amino acids and a possible direct effect of insulin on the uptake of tryptophan by brain.  相似文献   

18.
The effects of beta-selective blockade with metoprolol on the glucagon blood plasma level during insulin-induced hypoglycemia were studied in 20 control dogs, and 20 alloxan diabetic dogs. The results indicate that the sensitivity to exogenous insulin is increased in alloxan diabetes glucose counterregulatory mechanisms are impaired. After insulin administration glucagon concentration increased much more and quicker in the control group than in diabetic dogs. Beta-blockade with metoprolol increased glucagon secretion in both groups.  相似文献   

19.
Normal dogs were submitted to oral glucose loads or to intravenous glucose infusions. Insulin secretion rates (CISR) were calculated considering the resulting peripheral venous concentration differences in short intervals and the experimentally determined half life and apparent distribution space of exogenous insulin. Multiple regression analysis was done between CISR and both the level and the rate of change of plasma glucose. The regression coefficients were used as algorithm parameters for continuous plasma glucose dependent intravenous insulin administration in the same animals after induction of an insulin-dependent diabetes. Normal glycemic regulation over the day could be resotred by this sytem. The insulin responsiveness, however, varies from day to day; tusing this insulin dosage pattern we observed nearly normal plasma glucose curves and slightly elevated insulin reactions after glucose loading. This kind of algorithm could also be used in diabetic humans.  相似文献   

20.
In order to clarify the response of plasma gastric inhibitory polypeptide (GIP) to various nutrients and to investigate the relationship between the pancreas and GIP secretion, an experimental study was performed using normal and pancreatectomized dogs. Oral administration of glucose (2 g/kg) or butter (2 g/kg) resulted in an increase of plasma GIP in five normal dogs. In contrast, oral administration of arginine (1 g/kg) did not produce any discernible changes in plasma GIP in normal dogs. In a group of nine pancreatectomized dogs, the fasting level of plasma GIP did not differ from that of the control group. Furthermore, glucose ingestion in the pancreatectomized group resulted in the same pattern and the same degree of change in plasma GIP as it did in the normal controls. In contrast, plasma GIP did not change at all following fat loading in the pancreatectomized group. However, butter with pancreatic enzymes elicited a significant rise of plasma GIP in the pancreatectomized dogs. The present study indicates that plasma GIP increases following oral administration of glucose or fat but not arginine. Furthermore, it is demonstrated that GIP secretion following fat ingestion occurs only after fat digestion by pancreatic enzymes. In addition, the findings observed in the present study do not support the existence of feedback effect of insulin on GIP secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号