首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Insulin-like growth factor I (IGF-I) is known to exert an anabolic effect on tendon fibroblast production of collagen. IGF-I's regulation is complex and involves six different IGF binding proteins (IGFBPs). Of these, IGFBP-4 and -5 could potentially influence the effect of IGF-I in the tendon because they both are produced in fibroblast; however, the response of IGFBP-4 and -5 to mechanical loading and their role in IGF-I regulation in tendinous tissue are unknown. A splice variant of IGF-I, mechano-growth factor (MGF) is upregulated and known to be important for adaptation in loaded muscle. However, it is not known whether MGF is expressed and upregulated in mechanically loaded tendon. This study examined the effect of mechanical load on tendon collagen mRNA in relation to changes in the IGF-I systems mRNA expression. Data were collected at 2, 4, 8 and 16 days after surgical removal of synergistic muscle to the plantaris muscle of the rat, thus increasing the load to plantaris muscle and tendon. Nearly a doubling of the tendon mass was observed after 16 days of loading. A rapid rise in tendon procollagen III mRNA was seen after 2 days whereas the increase in procollagen I mRNA was significant from day 8. MGF was expressed and upregulated in loaded tendon tissue with a faster response than IGF-I, which was increased from day 8. Finally, IGFBP-4 mRNA was increased with a time pattern similar to procollagen III, whereas IGFBP-5 decreased at day 8. In conclusion, loading of tendon tissue results in an upregulation of IGF-I, IGFBP-4, and procollagen and is associated with an increase in tendon mass. Also, MGF is expressed with an early upregulation in loaded tendon tissue. We suggest that the IGF-I system could be involved in collagen synthesis in tendon in response to mechanical loading.  相似文献   

2.
Weight-bearing tendons in many species, including humans, chickens and horses, are prone to failure, in many cases without a discernible cause. The normal function of the tendon depends on the proper assembly of fibrils of type I collagen, the main structural component of the tendon. We studied the effect of in vitro culture, temperature (37 degrees C vs. 43 degrees C) and wounding on the expression of mRNAs for several collagen regulators, transforming growth factor beta (TGF(beta)), heat shock protein 47 (Hsp47) and connective tissue growth factor (CTGF), in chicken embryonic gastrocnemius tendon explants. The expression of mRNAs for TGF(beta) and Hsp47, a chaperone of collagen assembly, remained strong during the first day of in vitro culture, but then it decreased, slightly more at higher temperature. Additional injury in selected tendons had no significant effect on the levels of TGF(beta) and Hsp47 mRNAs. Likewise, the level of immunostained type I procollagen also decreased with the length of culture. The expression of CTGF gradually increased from 0 at the time of tendon removal with the duration of culture to strong after three days of culture when the expression of TGF(beta) and Hsp47 was low. We conclude that in vitro culture over the period of several days rather than an increase in temperature or additional wounding decreases the expression of TGF(beta), Hsp47 and type I procollagen and increases the expression of CTGF.  相似文献   

3.
Growth factor modulation of the extracellular matrix   总被引:4,自引:0,他引:4  
Two cell culture models were utilized to characterize the actions of peptide growth factors on the composition of the extracellular matrix of embryonic mesenchymal tissue. To model the three-dimensional architecture of mesenchymal tissue, chick embryonic mesenchymal cells were maintained in organ culture as adherent cell populations in small three-dimensional tissue spheroids and as sparse populations of cells embedded in a mesh of hydrated native collagen fibrils. Cell proliferation was stimulated by a variety of growth factors. All of the growth factors that elicited a mitogenic response in both of these culture systems also stimulated the deposition of an abundant fibronectin-containing extracellular matrix that colocalized with the regions of active cell proliferation. The suggestion that the matrigenic actions of growth factors for intact mesenchymal tissue are an integral part of mitogenic signaling is supported by the observation that surfaces derivatized with ProNectin, an artificial mimic of the RGD attachment domain of fibronectin, stimulated the proliferation of embryonic mesenchyme in the absence of exogenous growth factors. All of the growth factors that activated proliferation and fibronectin matrix accumulation stimulated the transformation of the mesenchymal cells into myofibroblasts that displayed the marker alpha-smooth muscle actin.  相似文献   

4.
5.
6.
Proteolytic cleavage of procollagen I to collagen I is essential for the formation of collagen fibrils in the extracellular matrix of vertebrate tissues. Procollagen is cleaved by the procollagen N- and C-proteinases, which remove the respective N- and C-propeptides from procollagen. Procollagen processing is initiated within the secretory pathway in tendon fibroblasts, which are adept in assembling an ordered extracellular matrix of collagen fibrils in vivo. It was thought that intracellular processing was restricted to the TGN (trans-Golgi network). In the present study, brefeldin A treatment of tendon explant cultures showed that N-proteinase activity is present in the resulting fused ER (endoplasmic reticulum)-Golgi compartment, but that C-proteinase activity is restricted to the TGN in embryonic chick tendon fibroblasts. In late embryonic and postnatal rat tail and postnatal mouse tail tendon, C-proteinase activity was detected in TGN and pre-TGN compartments. Preventing activation of the procollagen N- and C-proteinases with the furin inhibitor Dec-RVKR-CMK (decanoyl-Arg-Val-Lys-Arg-chloromethylketone) indicated that only a fraction of intracellular procollagen cleavage was mediated by newly activated proteinases. In conclusion, the N-propeptides are removed earlier in the secretory pathway than the C-propeptides. The removal of the C-propeptides in post-Golgi compartments most probably indicates preparation of collagen molecules for fibril formation at the cell-matrix interface.  相似文献   

7.
It is established fact that type I collagen spontaneously self-assembles in vitro in the absence of cells or other macromolecules. Whether or not this is the situation in vivo was unknown. Recent evidence shows that intracellular cleavage of procollagen (the soluble precursor of collagen) to collagen can occur in embryonic tendon cells in vivo, and when this occurs, intracellular collagen fibrils are observed. A cause-and-effect relationship between intracellular collagen and intracellular fibrils was not established. Here we show that intracellular cleavage of procollagen to collagen occurs in postnatal murine tendon cells in situ. Pulse-chase analyses showed cleavage of procollagen to collagen via its two propeptide-retained intermediates. Furthermore, immunoelectron microscopy, using an antibody that recognizes the triple helical domain of collagen, shows collagen molecules in large-diameter transport compartments close to the plasma membrane. However, neither intracellular fibrils nor fibripositors (collagen fibril-containing plasma membrane protrusions) were observed. The results show that intracellular collagen occurs in murine tendon in the absence of intracellular fibrillogenesis and fibripositor formation. Furthermore, the results show that murine postnatal tendon cells have a high capacity to prevent intracellular collagen fibrillogenesis.  相似文献   

8.
9.
Two factors must be present for primary avian tendon cells to commit 50% of their total protein production to procollagen: ascorbate and high cell density. Scorbutic primary avian tendon cells at high cell density (greater than 4 X 10(4) cells per cm2) responded to the addition of ascorbate by a sixfold increase in the rate of procollagen synthesis. The kinetics were biphasic, showing a slow increase during the first 12 h followed by a more rapid rise to a maximum after 36 to 48 h. In contrast, after ascorbate addition, the level of accumulated cytoplasmic procollagen mRNA (alpha 2) showed a 12-h lag followed by a slow linear increase requiring 60 to 72 h to reach full induction. At all stages of the induction process, the relative increase in the rate of procollagen synthesis over the uninduced state exceeded the relative increase in the accumulation of procollagen mRNA. A similar delay in mRNA induction was observed when the cells were grown in an ascorbate-containing medium but the cell density was allowed to increase. In all cases, the rate of procollagen synthesis peaked approximately 24 h before the maximum accumulation of procollagen mRNA. The kinetics for the increase in procollagen synthesis are not, therefore, in agreement with the simple model that mRNA levels are the rate-limiting factor in the collagen pathway. We propose that the primary control point is at a later step. Further support for this idea comes from inhibitor studies, using alpha, alpha'-dipyridyl to block ascorbate action. In the presence of 0.3 mM alpha, alpha'-dipyridyl there was a specific two- to threefold decrease in procollagen production after 4 h, but this was unaccompanied by a drop in procollagen mRNA levels. Therefore, inhibitor studies give further support to the idea that primary action of ascorbate is to release a post-translational block.  相似文献   

10.
Summary Antibodies to chicken gizzard myosin and to chicken skin collagen type I allow the myofibrillar and connective tissue development in the embryonic chicken gizzard to be followed. Fibroblasts are assumed to synthesize collagen prior to the onset of smooth muscle cell development in the muscle primordium (day 5); they are presumably also responsible for collagen synthesis close to the presumptive lamina propria and in the developing tubular glands (day 14 to 17). From day 6 to 8, myosin and collagen are colocalized intracellularly, and from day 9 onward collagen fibers start to appear extracellularly, eventually forming the trellis-like connective tissue septa that give the rhomboid profile found in the adult muscle. The close association of collagen and myosin in early development suggests that the muscle cells themselves produce and export collagen.  相似文献   

11.
Human connective tissue, e.g., tendon, responds dynamically to physical activity, with collagen synthesis being increased after both acute and prolonged exercise or training. Markers of collagen synthesis and degradation as well as concentration of several potential growth factors have been shown to increase markedly in the peritendinous tissue around the human Achilles tendon following exercise. Of these potential growth factors interleukin-6 (IL-6) showed the largest fold increase, suggesting that IL-6 may be involved in transforming mechanical loading into collagen synthesis in human tendon tissue. In the present study the tissue levels of type I collagen turnover markers [procollagen type I NH(2)-terminal propeptide (PINP) and C-OOH terminal telopeptide of type I collagen (ICTP)] were measured by the use of microdialysis in peritendinous tissue of the Achilles tendon in 14 male volunteers, who had recombinant human IL-6 (rhIL-6) infused into the peritendinous tissue of the Achilles' tendon in one leg, with the other leg serving as control. Subjects were randomly assigned to either a resting group or an exercise group performing a 1-h treadmill run (12 km/h, 2% uphill) before infusion. In addition to IL-6, serum concentrations of collagen turnover markers PINP, ICTP, and COOH-terminal telopeptide of type I collagen (ICTX) were measured. The peritendinous concentration of PINP rose markedly in response to rhIL-6 infusion in both the exercise and the rest group, demonstrating that infusion of IL-6 significantly stimulates collagen synthesis in the peritendinous tissue in humans. Exercise alone did not result in an increased collagen synthesis. This indicates that IL-6 is involved in the collagen synthesis and supports the hypothesis that IL-6 is an important growth factor of the connective tissue in healthy human tendons.  相似文献   

12.
To study the relationship between cell growth control, cell contact, and protein secretion, we examined the production of plasminogen activator, procollagen, and fibronectin by Chinese hamster ovary (CHO) fibroblasts, both as a function of position in the cell cycle and as a function of cell density. CHO fibroblasts that were synchronized at hourly intervals throughout the cell cycle by mitotic selection in an automated roller bottle apparatus secreted plasminogen activator only during the G2 and M phases of the cell cycle (10–14 h after mitotic selection). Cell-associated plasminogen activator activity was variable during G1 and S, but was greatly reduced during G2 and M. In contrast, secretion of the connective tissue matrix proteins, procollagen and fibronectin, was controlled by cell density rather than by cell cycle position. Type III procollagen and fibronectin were secreted throughout the cell cycle with no pronounced variations. Type I procollagen was not secreted by cycling cells and was observed in confluent cultures only after 24–48 h. To correlate these changes in protein secretion patterns with cell shape and contact, we used scanning electron microscopy (SEM) to study the appearance of CHO cells after mitotic selection. Actively dividing cells retained a high proportion of rounded, ruffled, and blebbed cells during all phases of the cell cycle. Only with increased cell density in contact-inhibited confluent cultures did most cells begin to flatten and spread. Thus, secretion of and attachment to extracellular matrix did not occur in rapidly dividing cells, but appeared to require the increased cell-cell contact and spreading that accompanies contact inhibition of growth. On the other hand, increased secretion of plasminogen activator was directly related to cell division and may be part of a sequence of events that allows cells growing in culture to loosen extracellular attachments in preparation for rounding and cytokinesis.  相似文献   

13.
The purpose of this study was to correlate ultrastructural features of tendon collagen fibrils at various stages of development with the presence of procollagen, pN-collagen, pC-collagen, and the free amino propeptides and carboxyl propeptide of type I procollagen. Tendons from 10-, 14-, and 18-day chicken embryos reveal small, well-defined intercellular compartments containing collagen fibrils with diameters showing a unimodal distribution. At 21 days (hatching) and 9 days (post hatching) and at 5 weeks (post hatching), the compartments are larger, less well-defined, and there is multimodal distribution of tendon fibril diameters. Procollagen and the intermediates pN-collagen and pC-collagen are present in tendons up to 18 days. Thereafter there is a marked reduction in procollagen, whereas the intermediates persist throughout all stages of development. Similarly, free amino propeptides and carboxyl propeptides of type I procollagen were found at all stages. The amino propeptide of type III procollagen was restricted to the peritendineum until 7 weeks post hatching. At that time, a network of fibrils containing the amino propeptide of type III procollagen was seen delineating well-circumscribed compartments of collagen fibrils throughout the entire tendon. This study supports the notion that pN- and pC-collagen have an extracellular role and participate in collagen fibrillogenesis.  相似文献   

14.
In this study, we propose a method for quantitative prediction of changes in concentrations of a number of key signaling, structural and effector molecules within the extracellular matrix of tendon. To achieve this, we introduce the notion of elementary cell responses (ECRs). An ECR defines a normal reference secretion profile of a molecule by a tenocyte in response to the tenocyte’s local strain. ECRs are then coupled with a model for mechanical damage of tendon collagen fibers at different straining conditions of tendon and then scaled up to the tendon tissue level for comparison with experimental observations. Specifically, our model predicts relative changes in ECM concentrations of transforming growth factor beta, interleukin 1 beta, collagen type I, glycosaminoglycan, matrix metalloproteinase 1 and a disintegrin and metalloproteinase with thrombospondin motifs 5, with respect to tendon straining conditions that are consistent with the observations in the literature. In good agreement with a number of in vivo and in vitro observations, the model provides a logical and parsimonious explanation for how excessive mechanical loading of tendon can lead to under-stimulation of tenocytes and a degenerative tissue profile, which may well have bearing on a better understanding of tendon homeostasis and the origin of some tendinopathies.  相似文献   

15.
Ascorbic acid displays the characteristics of an ideal inducer of tissue-specific function in primary avian tendon cells in culture. It is a highly specific, potent stimulator of collagen synthesis, it demonstrates slow reversible kinetics, and it has no effect on growth rate of the cultured cells. Kinetic analysis of ascorbate induction of collagen synthesis was used to determine the critical steps in this complex biosynthetic pathway. Full hydroxylation of the proline residues in collagen, although probably a necessary step for collagen induction, was in itself not sufficient for achieving either increased secretion or increased synthesis. On the other hand, an increase in secretion rate, which required both the presence of ascorbate and a high cell density, did correlate with the later stimulation in procollagen production. The process of procollagen secretion, therefore, meets the minimal requirements for the rate-limiting step. The fact that the cells maintained a large pool of intracellular procollagen despite changes in the rates of translation or secretion led us to postulate a possible feedback between the level of the internal procollagen pool and the rate of procollagen synthesis.  相似文献   

16.
Mechanical loading of tissue is known to influence local collagen synthesis, and microdialysis studies indicate that mechanical loading of human tendon during exercise elevates tendinous type I collagen production. Transforming growth factor-beta1 (TGF-beta1), a potent stimulator of type I collagen synthesis, is released from cultured tendon fibroblasts in response to mechanical loading. Thus TGF-beta1 could link mechanical loading and collagen synthesis in tendon tissue in vivo. Tissue levels of TGF-beta1 and type I collagen metabolism markers [procollagen I COOH-terminal propeptide (PICP) and COOH-terminal telopeptide of type I collagen (ICTP)] were measured by microdialysis in peritendinous tissue of the Achilles' tendon in six male volunteers before and after treadmill running (1 h, 12 km/h, 3% uphill). In addition, blood levels of TGF-beta1, PICP, and ICTP were obtained. PICP levels increased 68 h after exercise (P < 0.05). Dialysate levels of TGF-beta1 changed from 303 +/- 46 pg/ml (at rest) to 423 +/- 86 pg/ml 3 h postexercise. This change was nonsignificant, but the decay of tissue TGF-beta1 after catheter insertion was markedly delayed by exercise compared with the decay seen in resting subjects. Plasma concentrations of TGF-beta1 rose 30% in response to exercise (P < 0.05 vs. pre). Our observations indicate an increased local production of type I collagen in human peritendinous tissue in response to uphill running. Although not conclusive, changes in circulating and local TGF-beta1, in response to exercise, suggest a role for TGF-beta1 in mechanical regulation of local collagen type I synthesis in tendon-related connective tissue in vivo.  相似文献   

17.
Cells in tendon deposit parallel arrays of collagen fibrils to form a functional tissue, but how this is achieved is unknown. The cellular mechanism is thought to involve the formation of intracellular collagen fibrils within Golgi to plasma membrane carriers. This is facilitated by the intracellular processing of procollagen to collagen by members of the tolloid and ADAMTS families of enzymes. The carriers subsequently connect to the extracellular matrix via finger-like projections of the plasma membrane, known as fibripositors. In this study we have shown, using three-dimensional electron microscopy, the alignment of fibripositors with intracellular fibrils as well as an orientated cable of actin filaments lining the cytosolic face of a fibripositor. To demonstrate a specific role for the cytoskeleton in coordinating extracellular matrix assembly, cytochalasin was used to disassemble actin filaments and nocodazole or colchicine were used to disrupt microtubules. Microtubule disruption delayed procollagen transport through the secretory pathway, but fibripositor numbers were unaffected. Actin filament disassembly resulted in rapid loss of fibripositors and a subsequent disappearance of intracellular fibrils. Procollagen secretion or processing was not affected by cytochalasin treatment, but the parallelism of extracellular collagen fibrils was altered. In this case a significant proportion of collagen fibrils were found to no longer be orientated with the long axis of the tendon. The results suggest an important role for the actin cytoskeleton in the alignment and organization of the collagenous extracellular matrix in embryonic tendon.  相似文献   

18.
Tendons are composed of longitudinally aligned collagen fibrils arranged in bundles with an undulating pattern, called crimp. The crimp structure is established during embryonic development and plays a vital role in the mechanical behaviour of tendon, acting as a shock-absorber during loading. However, the mechanism of crimp formation is unknown, partly because of the difficulties of studying tendon development in vivo. Here, we used a 3D cell culture system in which embryonic tendon fibroblasts synthesise a tendon-like construct comprised of collagen fibrils arranged in parallel bundles. Investigations using polarised light microscopy, scanning electron microscopy and fluorescence microscopy showed that tendon constructs contained a regular pattern of wavy collagen fibrils. Tensile testing indicated that this superstructure was a form of embryonic crimp producing a characteristic toe region in the stress–strain curves. Furthermore, contraction of tendon fibroblasts was the critical factor in the buckling of collagen fibrils during the formation of the crimp structure. Using these biological data, a finite element model was built that mimics the contraction of the tendon fibroblasts and monitors the response of the Extracellular matrix. The results show that the contraction of the fibroblasts is a sufficient mechanical impulse to build a planar wavy pattern. Furthermore, the value of crimp wavelength was determined by the mechanical properties of the collagen fibrils and inter-fibrillar matrix. Increasing fibril stiffness combined with constant matrix stiffness led to an increase in crimp wavelength. The data suggest a novel mechanism of crimp formation, and the finite element model indicates the minimum requirements to generate a crimp structure in embryonic tendon.  相似文献   

19.
Development of the musculoskeletal system requires coordinated formation of distinct types of tissues, including bone, cartilage, muscle, and tendon. Compared to muscle, cartilage, and bone, cellular and molecular bases of tendon development have not been well understood due to the lack of tendon cell lines. The purpose of this study was to establish and characterize tendon cell lines. Three clonal tendon cell lines (TT-E4, TT-G11, and TT-D6) were established using transgenic mice harboring a temperature-sensitive mutant of SV40 large T antigen. Proliferation of these cells was significantly enhanced by treatment with bFGF and TGF-beta but not BMP2. Tendon phenotype-related genes such as those encoding scleraxis, Six1, EphA4, COMP, and type I collagen were expressed in these tendon cell clones. In addition to tendon phenotype-related genes, expression of osteopontin and Cbfal was observed. These clonal cell lines formed hard fibrous connective tissue when implanted onto chorioallantoic membrane in ovo. Furthermore, these cells also formed tendon-like tissues when they were implanted into defects made in patella tendon in mice. As these tendon cell lines also produced fibrocartilaginous tissues in tendon defect implantation experiments, mesenchymal stem cell properties were examined. Interestingly, these cells expressed genes related to osteogenic, chondrogenic, and adipogenic lineages at low levels when examined by RT-PCR. TT-G11 and TT-E4 cells differentiated into either osteoblasts or adipocytes, respectively, when they were cultured in cognate differentiation medium. These observations indicated that the established tendon cell line possesses mesenchymal stem cell-like properties, suggesting the existence of mesenchymal stem cell in tendon tissue.  相似文献   

20.
The ubiquitous connective tissues contain a wide range of cells including fibroblasts, osteoblasts and chondroblasts. Recently it has been demonstrated that another principal cell of the connective tissue is the smooth muscle cell in several organ systems. These have been shown to be responsible for the synthesis of the connective tissue matrix components of the uterine myometrium and of the arterial system, including collagen, both elastic fibre proteins and glycosaminoglycan. Microtubule inhibitors such as colchicine and vinblastine, and iron chelators such as alpha,alpha -dipyridyl have been used to study their morphologic and chemical effects on collagen synthesis and secretion. Colchicine produces an increase in large Golgi-associated vacuoles, which sometimes contain material reminiscent of aggregates of collagen macromolecules. Vinblastine produces alterations in the endoplasmic reticulum cisternae similar to alterations seen in ascorbic acid deficiency, and alpha,alpha-dipyridyl increases the frequency of regions in cells, interpretable as potential sites of communication of rough endoplasmic reticulum cisternae with the cell surface. Ferritin conjugated anti-procallagen sera were used to localize procollagen in cells and demonstrated procollagen not only in the cisternae of rough endoplasmic reticulum but in all of the elements of the Golgi complex as well. The studies reported in this review have shown that in cell culture arterial smooth muscle will produce not only the microfibrillar protein of the elastic fibre but soluble and/or insoluble elastin as well. Recent studies on serum factors responsible for the proliferation of connective tissue cells have demonstrated that at least one of the principal factors responsible for fibroblast and/or smooth muscle cell proliferation in culture is derived from thrombocytes. Medium containing serum derived from cell-free plasma lacks most of this proliferative effect which can be reinstated when platelets are present during recalcification to form serum. This effect is due to the platelet release reaction as shown by combining supernatant factors derived from platelets exposed to purified thrombin to cell-free, plasma derived serum. Studies with macrophages have also suggested that phagocytic macrophages release factor(s) into a cell culture medium that may also participate in stimulating fibroblasts to proliferate in vitro. The means by which these factors stimulate fibroblast proliferation and connective tissue synthesis remains to be elucidated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号