首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to provide a rational basis for the development of a pre-erythrocytic malaria vaccine we have aimed at: (a) elucidating the mechanisms of protection, and (b) identifying vaccine formulations that best elicit protection in experimental animals and humans. Based on earlier successful immunization of experimental animals with irradiated sporozoites, human volunteers were exposed to the bites of large numbers of Plasmodium falciparum or P. vivax infected irradiated mosquitoes. The result of this vaccine trial demonstrated for the first time that a pre-erythrocytic vaccine, administered to humans, can result in their complete resistance to malaria infection. However, since infected irradiated mosquitoes are unavailable for large scale vaccination, the alternative is to develop subunit vaccines. The human trials using irradiated sporozoites provided valuable information on the human immune responses to pre-erythrocytic stages and studies on mice an excellent experimental model to characterize protective immune mechanisms. The circumsporozoite protein, the first pre-erythrocytic antigen identified, is present in all malaria species, displaying a similar structure, with a central region of repeats, and two conserved regions, essential for parasite development. Most pre-erythrocytic vaccine candidates are based on the CS protein, expressed in various cell lines, microorganisms, and recently the corresponding DNA. We and others have identified CS-specific B and T cell epitopes, recognized by the rodent and human immune systems, and used them for the development of synthetic vaccines. We used synthetic peptide vaccines, multiple antigen peptides and polyoximes, for immunization, first in experimental animals, and recently in two human safety and immunogenicity trials. We also report here on our work on T cell mediated immunity, particularly the protection of mice immunized with viral vectors expressing CS-specific cytotoxic CD8+ T cell epitopes, and the striking booster effect of recombinant vaccinia virus. To what degree CD8+ T cells, and/or other T cells specific for sporozoites and/or liver stage epitopes, contribute to pre-erythrocytic protective immunity in humans, remains to be determined.  相似文献   

2.
The diversion of disease carrying insect from humans to animals may reduce transmission of diseases such as malaria. The use of animals to mitigate mosquito bites on human is called ‘zooprophylaxis’. We introduce a mathematical model for Plasmodium vivax malaria transmission with two bloodmeal hosts (humans and domestic animals) to study the effect of zooprophylaxis. After computing the basic reproduction number from the proposed model, we explore how perturbations in the parameters, sensitive to the effects of control measures, affect its value. Zooprophylaxis is shown to determine whether a basic reproduction becomes bigger than an outbreak threshold value or not. Sensitivity analysis shows that increasing the relative animal population size works better in P. vivax malaria control than decreasing the mosquito population when the relative animal population size is larger than a threshold value.  相似文献   

3.
The lack of immunogenicity of most malaria antigens and the complex immune responses required for achieving protective immunity against this infectious disease have traditionally hampered the development of an efficient human malaria vaccine. The current boom in development of recombinant viral vectors and their use in prime-boost protocols that result in enhanced immune outcomes have increased the number of malaria vaccine candidates that access pre-clinical and clinical trials. In the frontline, adenoviruses and poxviruses seem to be giving the best immunization results in experimental animals and their mutual combination, or their combination with recombinant proteins (formulated in adjuvants and given in sequence or being given as protein/virus admixtures), has been shown to reach unprecedented levels of anti-malaria immunity that predictably will be somehow reproduced in the human setting. However, all this optimism was previously seen in the malaria vaccine development field without many real applicable results to date. We describe here the current state-of-the-art in the field of recombinant adenovirus research for malaria vaccine development, in particular referring to their use in combination with other immunogens in heterologous prime-boost protocols, while trying to simultaneously show our contributions and point of view on this subject.  相似文献   

4.
A model for a vector mosquito population with two bloodmeal hosts (man and a domestic animal) was developed to study the influences of domestic animals on the frequency of mosquito bites on man and the endemicity of human malaria. The vector population model, including blood-feeding success in the adult stage (depending on host density and biting efficiency) and density-dependent regulation in the larval stage, was combined with the Ross-Macdonald malaria transmission model. Model analyses suggested that introduction of domestic animals easily fed upon by mosquitoes increases mosquito density and, in some situations, frequency of mosquito bites on man and the infection rate of malaria through increased success of blood-feeding. Extinction of malaria was predicted only when an extremely large number of easily accessible (as compared to man) domestic animals are introduced. Limitations in the concept of zooprophylaxis and problems of livestock management in malaria control are discussed.  相似文献   

5.
The success of passive immunization suggests that antibody-based therapies will be effective at controlling malaria. We describe the development of fully human antibodies specific for Plasmodium falciparum by antibody repertoire cloning from phage display libraries generated from immune Gambian adults. Although these novel reagents bind with strong affinity to malaria parasites, it remains unclear if in vitro assays are predictive of functional immunity in humans, due to the lack of suitable animal models permissive for P. falciparum. A potentially useful solution described herein allows the antimalarial efficacy of human antibodies to be determined using rodent malaria parasites transgenic for P. falciparum antigens in mice also transgenic for human Fc-receptors. These human IgG1s cured animals of an otherwise lethal malaria infection, and protection was crucially dependent on human FcgammaRI. This important finding documents the capacity of FcgammaRI to mediate potent antimalaria immunity and supports the development of FcgammaRI-directed therapy for human malaria.  相似文献   

6.
Infection of the squirrel monkey, Saimiri sciureus, with several strains of Plasmodium falciparum leads in a proportion of animals to neurological symptoms with a fatal outcome. This first simian model for human cerebral malaria was studied with three strains of parasites, the uncloned Palo Alto(FUP-1) strain, the Palo AltoPLF3 clone MHB11, and the recently monkey-adapted P. falciparum strain IPC/RAY. Cerebral malaria could develop during primo infection of monkeys, whether the animals had been splenectomized or not. It did not occur in all animals and the appearance of neurological symptoms could not be predicted, as it was not related to the degree of parasitemia or duration of parasite infections.  相似文献   

7.
ObjectiveMalaria is an infectious parasitic disease affecting most of countries worldwide. Due to antimalarial drug resistance, researchers are seeking to find another safe efficient source for treatment of malaria. Since many years ago, medicinal plants were widely used for the treatment of several diseases. In general, most application is done first on experimental animals then human. In this article, medicinal plants as antimalarial agents in experimental animals were reviewed from January 2000 until November 2020.Materials and methodsIn this systematic review published articles were reviewed using the electronic databases NCBI, ISI Web of knowledge, ScienceDirect and Saudi digital library to check articles and theses for M.Sc/Ph.D. The name of the medicinal plant with its taxon ID and family, the used Plasmodium species, plant part used and its extract type and the country of harvest were described.Results and conclusionThe reviewed plants belonged to 83 families. Medicinal plants of families Asteraceae, Meliaceae Fabaceae and Lamiaceae are the most abundant for use in laboratory animal antimalarial studies. According to region, published articles from 33 different countries were reviewed. Most of malaria published articles are from Africa especially Nigeria and Ethiopia. Leaves were the most common plant part used for the experimental malaria research. In many regions, research using medicinal plants to eliminate parasites and as a defensive tool is popular.  相似文献   

8.
Polymorphic parasite antigens are known targets of protective immunity to malaria, but this antigenic variation poses challenges to vaccine development. A synthetic MSP-1 Block 2 construct, based on all polymorphic variants found in natural Plasmodium falciparum isolates has been designed, combined with the relatively conserved Block 1 sequence of MSP-1 and expressed in E.coli. The MSP-1 Hybrid antigen has been produced with high yield by fed-batch fermentation and purified without the aid of affinity tags resulting in a pure and extremely thermostable antigen preparation. MSP-1 hybrid is immunogenic in experimental animals using adjuvants suitable for human use, eliciting antibodies against epitopes from all three Block 2 serotypes. Human serum antibodies from Africans naturally exposed to malaria reacted to the MSP-1 hybrid as strongly as, or better than the same serum reactivities to individual MSP-1 Block 2 antigens, and these antibody responses showed clear associations with reduced incidence of malaria episodes. The MSP-1 hybrid is designed to induce a protective antibody response to the highly polymorphic Block 2 region of MSP-1, enhancing the repertoire of MSP-1 Block 2 antibody responses found among immune and semi-immune individuals in malaria endemic areas. The target population for such a vaccine is young children and vulnerable adults, to accelerate the acquisition of a full range of malaria protective antibodies against this polymorphic parasite antigen.  相似文献   

9.
At the 2010 Keystone Symposium on "Malaria: new approaches to understanding Host-Parasite interactions", an extra scientific session to discuss animal models in malaria research was convened at the request of participants. This was prompted by the concern of investigators that skepticism in the malaria community about the use and relevance of animal models, particularly rodent models of severe malaria, has impacted on funding decisions and publication of research using animal models. Several speakers took the opportunity to demonstrate the similarities between findings in rodent models and human severe disease, as well as points of difference. The variety of malaria presentations in the different experimental models parallels the wide diversity of human malaria disease and, therefore, might be viewed as a strength. Many of the key features of human malaria can be replicated in a variety of nonhuman primate models, which are very under-utilized. The importance of animal models in the discovery of new anti-malarial drugs was emphasized. The major conclusions of the session were that experimental and human studies should be more closely linked so that they inform each other, and that there should be wider access to relevant clinical material.  相似文献   

10.
Recent insights into humoral and cellular immune responses against malaria   总被引:1,自引:0,他引:1  
Effective immunity to malaria has been clearly demonstrated among individuals naturally exposed to malaria, and can be induced by experimental infections in animals and humans. The large number of malaria antigens has presented a major challenge to identifying protective responses and their targets, and it is likely that robust immunity is mediated by responses to multiple antigens. These include merozoite surface antigens and invasion ligands, variant antigens on the surface of parasitized red blood cells, in addition to sporozoite and liver-stage antigens. Immunity seems to require humoral and cellular immune components, probably in co-operation, although the relative importance of each remains unclear. This review summarizes recent progress towards understanding the targets and mechanisms that are important for mediating immunity to malaria.  相似文献   

11.
The metabolic relationships among the antioxidant nutrients selenium, sulfur, and vitamin E are particularly close. Selenium and vitamin E have long been known to spare one another in certain nutritional diseases of animals, and selenium has been considered to have a key antioxidant defense function as a component of glutathione peroxidase. However, the antioxidant role of glutathione peroxidase has been questioned and new proteins containing selenium have been identified: phospholipid hydroperoxide glutathione peroxidase, selenoprotein P, and iodothyronine deiodinase. Glutathione peroxidase activity independent of selenium resides in the glutathione S-transferases. Glutathione participates in both enzymatic and nonenzymatic antioxidant defense systems. Some low-molecular weight selenium compounds (e.g., ebselen) exhibit glutathione peroxidase-like action. Certain low molecular weight thiols decompose peroxides nonenzymatically (e.g., the ovothiols). Murine malaria appears to be a useful experimental model for investigating interrelationships of selenium and vitamin E. Vitamin E deficiency protects against the parasite, especially when the mice are concurrently fed peroxidizable fat such as fish or linseed oils. Selenium deficiency, on the other hand, has little or no protective effect against the parasite. Any practical utility of pro-oxidant diets in combating human malaria remains to be determined.  相似文献   

12.
The question whether malarias of animals could be considered true zoonoses was examined. The research in this connection for the past decade or so was reviewed. That simian malarias are true zoonoses has been adequately demonstrated. In addition, there is great potential for human malarias being true anthroponoses. The author considers, therefore, that the significance of non-human reservoirs of human malaria in the control or eradication of malaria should be reconsidered.  相似文献   

13.
Plasmodium falciparum malaria remains a global public health threat. Optimism that a highly effective malaria vaccine can be developed stems in part from the observation that humans can acquire immunity to malaria through experimental and natural P. falciparum infection. Recent advances in systems immunology could accelerate efforts to unravel the mechanisms of acquired immunity to malaria. Here, we review the tools of systems immunology, their current limitations in the context of human malaria research, and the human 'models' of malaria immunity to which these tools can be applied.  相似文献   

14.
Splenectomised squirrel monkeys (Saimiri sciureus) are increasingly being used as an experimental host for human malaria studies, notably for the assessment of candidate vaccines against Plasmodium falciparum blood-stage infection. Recently, S. sciureus monkeys in our primate-breeding colony were reported to be asymptomatic carriers of a putative Haemobartonella species. Patent haemobartonella infection is frequently activated following splenectomy, and may interfere with studies on the course of P. falciparum parasitaemia in these animals. Here, we show by 16S rRNA gene sequence analysis that this wall-less bacterium is not a rickettsia but, instead, is a haemotrophic mycoplasma. Haemotrophic mycoplasmas are a newly identified group of mycoplasmas that parasitise the surfaces of erythrocytes of a wide variety of vertebrate hosts.  相似文献   

15.
16.
Hydroxynaphthoquinone 566C80 was synthesised and initially developed as an antimalarial with potent activity against drug-resistant strains of the human malaria parasite, Plasmodium falciparum. Subsequent studies have revealed that in addition, this compound has experimental activity, both in vitro and in vivo, against Pneumocystis carinii and Toxoplasma gondii; the data obtained thus far for Cryptosporidium parvum are equivocal. Currently 566C80 is being assessed clinically not only against malaria, but also against P. carinii pneumonia, toxoplasmosis and cryptosporidiosis.  相似文献   

17.
Cerebral malaria is a fatal complication of malaria. Conventional methods for evaluating experimental cerebral malaria have several drawbacks. Therefore, we aimed to develop an easy-to-use method for evaluating experimental cerebral malaria using OKD48 (Keap1-dependent Oxidative stress Detector, No-48-luciferase) mice to evaluate oxidative stress. OKD48 mice infected with Plasmodium berghei ANKA strain (PbA) suffered from experimental cerebral malaria and oxidative stress was successfully detected in the brains of living OKD48 mice developing experimental cerebral malaria. Oxidative stress in the brain was dependent on the development of experimental cerebral malaria, as prevention of experimental cerebral malaria did not elicit oxidative stress. We provide a novel evaluation method for experimental cerebral malaria using oxidative stress indicator OKD48 mice.  相似文献   

18.
Malaria is a major killer of children worldwide and the strongest known force for evolutionary selection in the recent history of the human genome. The past decade has seen growing evidence of ethnic differences in susceptibility to malaria and of the diverse genetic adaptations to malaria that have arisen in different populations: epidemiological confirmation of the hypotheses that G6PD deficiency, alpha+ thalassemia, and hemoglobin C protect against malaria mortality; the application of novel haplotype-based techniques demonstrating that malaria-protective genes have been subject to recent positive selection; the first genetic linkage maps of resistance to malaria in experimental murine models; and a growing number of reported associations with resistance and susceptibility to human malaria, particularly in genes involved in immunity, inflammation, and cell adhesion. The challenge for the next decade is to build the global epidemiological infrastructure required for statistically robust genomewide association analysis, as a way of discovering novel mechanisms of protective immunity that can be used in the development of an effective malaria vaccine.  相似文献   

19.
Birds often face various stressors during feather renewing, for example, enduring infection with blood parasites. Because nutritional resources are typically limited, especially for wild animals, when an individual allocates energy to one physiological system, there is subsequently less for other processes, thereby requiring a trade‐off. Surprisingly, potential trade‐offs between malaria infection and feather growth rate have not been experimentally considered yet. Here, we conducted three studies to investigate whether a trade‐off occurs among feather growth rate, malaria infection and host health conditions. First, we explored whether naturally infected and uninfected house sparrows differed in feather growth rate in the wild. Second, we asked whether experimental inoculation of malaria parasites and/or forcing the renewal of a tail feather. Lastly, we evaluated whether individual condition was affected by experimentally‐induced feather regrowth and/or malaria experimental infection. Our findings showed that feather growth rate was negatively affected by natural malaria infection status in free‐living birds and by experimental infection in captive birds. Furthermore, birds that did not increase body mass or hematocrit during the experimental study had slower feather growth. Together our results suggest that infection with blood parasites has more negative health effects than the growth of tail feathers and that these two processes (response to blood parasite infection and renewal of feathers) are traded‐off against each other. As such, our results highlight the role of malaria parasites as a potential mechanism driving other trade‐offs in wild passerines.  相似文献   

20.
Mosquitoes, which evade contact with long-lasting insecticidal nets and indoor residual sprays, by feeding outdoors or upon animals, are primary malaria vectors in many tropical countries. They can also dominate residual transmission where high coverage of these front-line vector control measures is achieved. Complementary strategies, which extend insecticide coverage beyond houses and humans, are required to eliminate malaria transmission in most settings. The overwhelming diversity of the world's malaria transmission systems and optimal strategies for controlling them can be simply conceptualized and mapped across two-dimensional scenario space defined by the proportion of blood meals that vectors obtain from humans and the proportion of human exposure to them which occurs indoors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号