首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Improvement of the biochemical characteristics of enzymes has been aided by misincorporation mutagenesis and DNA shuffling. Shuffling techniques can be used on a collection of mutants of the same gene, or related families of genes can be shuffled to produce mutants encoding chimeric gene products. One difficulty with current shuffling procedures is the predominance of unshuffled ("parental") molecules in the pool of mutants. We describe a procedure for gene shuffling using degenerate primers that allows control of the relative levels of recombination between the genes that are shuffled and reduces the regeneration of unshuffled parental genes. This procedure has the advantage of avoiding the use of endonucleases for gene fragmentation prior to shuffling and allows the use of random mutagenesis of selected segments of the gene as part of the procedure. We illustrate the use of the technique with a diverse family of beta-xylanase genes that possess widely different G+C contents.  相似文献   

5.
6.
7.
8.
9.
顾超  傅楠  叶江  张惠展 《微生物学报》2011,51(4):532-537
辅酶Q(coenzyme Q,CoQ)作为线粒体呼吸链中的递氢体具有较高的学术及应用价值.由ubiA基因编码的4-羟苯甲酸聚异戊二烯转移酶(UbiA)是大肠杆菌CoQ生物合成途径的限速步骤,但通过系统突变对其结构进行研究鲜有报道.[目的]应用化学合成的随机序列寡核苷酸,对ubiA基因编码活性区域的DNA序列进行随机突变...  相似文献   

10.
The Neurospora crassa nuclear mutant cyt-21-1 (originally 297-24; Pittenger, T.H., and West, D.J. (1979) Genetics 93, 539-555) has a defect leading to gross deficiency of mitochondrial small ribosomal subunits. Here, we have cloned the cyt-21+ gene from a N. crassa genomic library, using the sib selection procedure (Akins, R. A., and Lambowitz, A. M. (1985) Mol. Cell Biol. 5, 2272-2278). The genomic clone contains a short split gene encoding a basic protein of 107 amino acid residues. This protein shows strong homology to Escherichia coli ribosomal protein S-16. Comparison of mutant and wild-type mitochondrial ribosomal proteins (Kuiper, M. T. R., Holtrop, M., Vennema, H., Lambowitz, A. M., and de Vries, H. (1988) J. Biol. Chem. 263, 2848-2852) indicates that the cyt-21 gene encodes N. crassa mitochondrial ribosomal protein S-24. The expression of the cyt-21+ gene is regulated such that the level of the putative cyt-21+ mRNA is increased about 5-fold when mitochondrial protein synthesis is inhibited. We suggest that this reflects part of a general mechanism for coordinately activating Neurospora nuclear genes that encode mitochondrial constituents in response to impaired mitochondrial function. This is the first report of the cloning and characterization of a mitochondrial ribosomal protein gene from N. crassa.  相似文献   

11.
A lambda gt11 cDNA library was constructed from a normal human thyroid and screened with a rabbit anti-porcine thyroperoxidase antibody. A series of thyroperoxidase (TPO) clones were obtained which allowed determination of the complete primary structure of the protein. The library was also screened with serum from a patient with Hashimoto's thyroiditis, an autoimmune disease characterized by the presence in the serum of high titers of autoantibodies directed against the 'microsomal antigen' (McAg). Comparison of the cDNA sequences from TPO clones and McAg clones provides definite proof that the McAg is TPO. A short segment of TPO was characterized as bearing a major epitope involved in autoimmunity. The primary structure of TPO was 42% homologous to myeloperoxidase (MPO). It contains, in addition, a C-terminal extension with a membrane anchor region contiguous to two domains encoded by modules belonging to the EGF and C4b gene families. The existence in TPO of still another domain presenting a significant homology with a putative heme-binding region of cytochrome C oxidase polypeptide I raises the possibility that a mitochondrial gene module has contributed a piece to the evolution of a typical nuclear mosaic gene.  相似文献   

12.
13.
Mitochondrial and nuclear DNAs contribute to encode the whole mitochondrial protein complement. The two genomes possess highly divergent features and properties, but the forces influencing their evolution, even if different, require strong coordination. The gene content of mitochondrial genome in all Metazoa is in a frozen state with only few exceptions and thus mitochondrial genome plasticity especially concerns some molecular features, i.e. base composition, codon usage, evolutionary rates. In contrast the high plasticity of nuclear genomes is particularly evident at the macroscopic level, since its redundancy represents the main feature able to introduce genetic material for evolutionary innovations. In this context, genes involved in oxidative phosphorylation (OXPHOS) represent a classical example of the different evolutionary behaviour of mitochondrial and nuclear genomes. The simple DNA sequence of Cytochrome c oxidase I (encoded by the mitochondrial genome) seems to be able to distinguish intra- and inter-species relations between organisms (DNA Barcode). Some OXPHOS subunits (cytochrome c, subunit c of ATP synthase and MLRQ) are encoded by several nuclear duplicated genes which still represent the trace of an ancient segmental/genome duplication event at the origin of vertebrates.  相似文献   

14.
15.
Dominant mutations in the yeast nuclear gene NAM2 cure the RNA splicing deficiency resulting from the inactivation of the bI4 maturase encoded by the fourth intron of the mitochondrial cytochrome b gene. This maturase is required to splice the fourth intron of this gene and to splice the fourth intron of the mitochondrial gene oxi3 encoding cytochrome oxidase subunit I. We have cloned the nuclear gene NAM2, which codes for two overlapping RNAs, 3.2 kb and 3.0 kb long, which are transcribed in the same direction but differ at their 5' ends. NAM2 compensating mutations probably result from point mutations in the structural gene. Integration of the cloned gene occurs at its homologous locus on the right arm of chromosome XII. Inactivation of the NAM2 gene either by transplacement with a deleted copy of the gene, or by disruption, is not lethal to the cell, but leads to the destruction of the mitochondrial genome with the production of 100% cytoplasmic petites.  相似文献   

16.
In yeast mitochondria, most of the isoaccepting species of tyrosyl tRNA are coded by a mitochondrial gene, tyrA. A particular isoaccepting species is coded by a second mitochondrial gene, tyrB. This gene is not expressed in certain strains of yeast which show no deficient phenotype. Genetic crosses between strains expressing or not expressing the tyrB gene demonstrate that expression is controlled by specific nuclear genes and that a mutation of the tyrA gene can be bypassed when the tyrB gene is operative.  相似文献   

17.
18.
BACKGROUND: The yeast CDC9 gene encodes a DNA ligase I activity required during nuclear DNA replication to ligate the Okazaki fragments formed when the lagging DNA strand is synthesised. The only other DNA ligase predicted from the yeast genome sequence, DNL4/LIG4, is specifically involved in a non-homologous DNA end-joining reaction. What then is the source of the DNA ligase activity required for replication of the yeast mitochondrial genome? RESULTS: We report that CDC9 encodes two distinct polypeptides expressed from consecutive in-frame AUG codons. Translational initiation at these two sites gives rise to polypeptides differing by a 23 residue amino-terminal extension, which corresponds to a functional mitochondrial pre-sequence sufficient to direct import into yeast mitochondria. Initiation at the first AUG codon results in a 755 amino-acid polypeptide that is imported into mitochondria, whereupon the pre-sequence is proteolytically removed to yield the mature mitochondrial form of Cdc9p. Initiation at the second AUG codon produces a 732 amino-acid polypeptide, which is localised to the nucleus. Cells expressing only the nuclear isoform were found to be specifically defective in the maintenance of the mitochondrial genome. CONCLUSIONS: CDC9 encodes two distinct forms of DNA ligase I. The first is targeted to the mitochondrion and is required for propagation and maintenance of mitochondrial DNA, the second localises to the nucleus and is sufficient for the essential cell-division function associated with this gene.  相似文献   

19.
M C Costanzo  E C Seaver    T D Fox 《The EMBO journal》1986,5(13):3637-3641
Mitochondrial translation of the oxi2 mRNA, encoding yeast cytochrome c oxidase subunit III (coxIII), has previously been shown to specifically require the mitochondrially located protein product of the nuclear gene PET494. We show here that this specific translational activation involves at least one other newly identified gene termed PET54. Mutations in PET54 cause an absence of the coxIII protein despite the presence of normal levels of its mRNA. pet494 mutations are known to be suppressible by mitochondrial gene rearrangements that replace the normal 5'-untranslated leader of the oxi2 mRNA with the leaders of other mitochondrial mRNAs. In this study we show that pet54, pet494 double mutants are suppressed by the same mitochondrial gene rearrangements, showing that the PET54 product is specifically required, in addition to the PET494 protein, for translation of the oxi2 mRNA. Since, as we show here, PET54 is not an activator of PET494 gene expression, our results suggest that the products of both of these genes may act together to stimulate coxIII translation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号