首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Our previous studies have suggested that all the known lineage compartment borders in the wing imaginal disc of Drosophila are coincident with boundaries of reduced gap junctional communication (communication compartment borders). Since engrailed discs have a disrupted anterior/posterior (A/P) lineage border (G. Morata and P. A. Lawrence, 1975, Nature (London) 255, 614-617), it was of great interest to determine if their A/P communication restriction boundary is similarly disrupted. Examination of gap-junction-mediated exchange of small fluorescent molecules between cells in the engrailed wing disc revealed a boundary of restricted communication that appeared to be identical to the wild-type A/P communication restriction boundary. This result suggests that lineage compartments are not required for the formation of A/P communication restrictions. Furthermore, we suggest that perhaps communication compartments are the domains within which information is provided for specifying the formation of lineage compartments.  相似文献   

2.
J P Vincent  P H O'Farrell 《Cell》1992,68(5):923-931
In Drosophila embryos, boundaries of lineage restriction separate groups of cells, or compartments. Engrailed is essential for specification of the posterior compartment of each segment, and its expression is thought to mark this compartment. Using a new photo-activatable lineage tracer, we followed the progeny of single embryonic cells marked at the blastoderm stage. No clones straddled the anterior edges of engrailed stripes (the parasegment border). However, posterior cells of each stripe lose engrailed expression, producing mixed clones. We suggest that stable expression of engrailed by cells at the anterior edge of the stripe reflects, not cell-intrinsic mechanisms, but proximity to cells that produce Wingless, an extracellular signal needed for maintenance of engrailed expression. If control of posterior cell fate parallels control of engrailed expression, cell fate is initially responsive to cell environment and cell fate determination is a later event.  相似文献   

3.
 The genital disc of Drosophila, which gives rise to the genitalia and analia of adult flies, is formed by cells from different embryonic segments. To study the organization of this disc, the expressions of segment polarity and homeotic genes were investigated. The organization of the embryonic genital primordium and the requirement of the engrailed and invected genes in the adult terminalia were also analysed. The results show that the three primordia, the female and male genitalia plus the analia, are composed of an anterior and a posterior compartment. In some aspects, each of the three primordia resemble other discs: the expression of genes such as wingless and decapentaplegic in each anterior compartment is similar to that seen in leg discs, and the absence of engrailed and invected cause duplications of anterior regions, as occurs in wing discs. The absence of lineage restrictions in some regions of the terminalia and the expression of segment polarity genes in the embryonic genital disc suggest that this model of compartmental organization evolves, at least in part, as the disc grows. The expression of homeotic genes suggests a parasegmental organization of the genital disc, although these genes may also change their expression patterns during larval development. Received: 4 February 1997 / Accepted: 22 May 1997  相似文献   

4.
5.
Summary By X-irradiation ofM/M + embryos and larvae to induce mitotic recombination, clones ofM +/M+ genotype were obtained (Fig. 1). Since such cells grow faster than the surroundingM/M +-cells they can fill large areas within the compartments of an imaginal disc.The present studies concentrated mainly on the three leg discs. Clones were induced by doses of 1000 r at ages ranging from 3±0.5 h after oviposition to 144 h.All clones induced later than the blastoderm stage were absolutely restricted to either the anterior or the posterior compartment of a disc. The border between the anterior and posterior compartment runs as a straight line along the entire leg and at the distal end separates the two claws (Figs. 5, 6, 7). A further subdivision of the anterior compartment is indicated by clones initiated in the second larval instar (Fig. 11). A parallel subdivision could not be detected in the posterior compartment. Irradiation in the early third instar led to clones which were restricted to single longitudinal bristle rows and leg segments. But no clear-cut compartment borders could be found; in particular a proximo-distal separation appears to be absent.Among the 318 clones induced at the blastoderm stage eleven extended from the wing into the second leg (Fig. 8), or from the haltere into the third leg.With the exception of 3 clones that apparently occupied the anterior as well as the posterior compartment of a wing or a leg, all clones remained confined to either the anterior or the posterior compartment.Frequently clones overlapped left and right forelegs (Fig. 9). Intersegmental overlaps were not observed.The results show that the earliest compartment borders appear in all thoracic discs. This suggests that compartmentalization is a fundamental process common to all discs.Supported bySchweizerischer Nationalfonds Gesuch Nr. 3.480-0.75  相似文献   

6.
In developmental biology, the sequence of gene induction and pattern formation is best studied over time as an organism develops. However, in the model system of Drosophila larvae this oftentimes proves difficult due to limitations in imaging capabilities. Using the larval wing imaginal disc, we show that both overall growth, as well as the creation of patterns such as the distinction between the anterior(A) and posterior(P) compartments and the dorsal(D) and ventral(V) compartments can be studied directly by imaging the wing disc as it develops inside a larva. Imaged larvae develop normally, as can be seen by the overall growth curve of the wing disc. Yet, the fact that we can follow the development of individual discs through time provides the opportunity to simultaneously assess individual variability. We for instance find that growth rates can vary greatly over time. In addition, we observe that mechanical forces act on the wing disc within the larva at times when there is an increase in growth rates. Moreover, we observe that A/P boundary formation follows the established sequence and a smooth boundary is present from the first larval instar on. The division of the wing disc into a dorsal and a ventral compartment, on the other hand, develops quite differently. Contrary to expectation, the specification of the dorsal compartment starts with only one or two cells in the second larval instar and a smooth boundary is not formed until the third larval instar.  相似文献   

7.
The development of supernumerary bristle precursors induced by the mutation shaggy (sgg; also known as zeste-white 3) was examined in the developing wing blade of imaginal and pupal Drosophila. sgg clones were induced by mitotic recombination; clones were marked using enhancer-trap flies which express beta-galactosidase ubiquitously in imaginal tissues, while bristle precursors were identified using sensillum and bristle-specific enhancer-trap lines. It was shown that the precursors of supernumerary sgg bristles in the wing blade mimicked the development of morphologically similar margin bristles, developing in a manner similar to that of anterior sensory bristles in anterior clones and posterior noninnervated bristles in posterior clones. Interestingly, supernumerary anterior sensory bristles appeared outside the normal regions of "proneural" gene activity as identified using anti-achaete. Moreover, sgg could induce the ectopic expression of achaete in anterior clones. Thus, in the anterior wing blade the sgg mutation leads to the formation of ectopic proneural regions.  相似文献   

8.
The Drosophila wing imaginal disc is subdivided into notum, hinge and blade territories during the third larval instar by formation of several deep apical folds. The molecular mechanisms of these subdivisions and the subsequent initiation of morphogenic processes during metamorphosis are poorly understood. Here, we demonstrate that the Dorsocross (Doc) T-box genes promote the progression of epithelial folds that not only separate the hinge and blade regions of the wing disc but also contribute to metamorphic development by changing cell shapes and bending the wing disc. We found that Doc expression was restricted by two inhibitors, Vestigial and Homothorax, leading to two narrow Doc stripes where the folds separating hinge and blade are forming. Doc mutant clones prevented the lateral extension and deepening of these folds at the larval stage and delayed wing disc bending in the early pupal stage. Ectopic Doc expression was sufficient to generate deep apical folds by causing a basolateral redistribution of the apical microtubule web and a shortening of cells. Cells of both the endogenous blade/hinge folds and of folds elicited by ectopic Doc expression expressed Matrix metalloproteinase 2 (Mmp2). In these folds, integrins and extracellular matrix proteins were depleted. Overexpression of Doc along the blade/hinge folds caused precocious wing disc bending, which could be suppressed by co-expressing MMP2RNAi.  相似文献   

9.
M. Sanicola  J. Sekelsky  S. Elson    W. M. Gelbart 《Genetics》1995,139(2):745-756
During development of the Drosophila adult appendage precursors, the larval imaginal disks, the decapentaplegic (dpp) gene is expressed in a stripe just anterior to the anterior/posterior (A/P) compartment boundary. Here, we investigate the genetic controls that lead to production of this stripe. We extend previous observations on leaky engrailed (en) mutations by showing that mutant clones completely lacking both en and invected (inv) activity ectopically express dpp-lacZ reporter genes in the posterior compartment, where dpp activity ordinarily is repressed. Similarly, patched (ptc) is also ectopically expressed in such posterior compartment en(-)inv(-) null clones. In contrast, these en(-)inv(-) clones exhibit loss of hedgehog (hh) expression. We suggest that the absence of dpp expression in the posterior compartment is due to direct repression by en. Ubiquitious expression of en in imaginal disks, produced by a hs-en construct, eliminates the expression of dpp-lacZ in its normal A/P boundary stripe. We identify three in vitro Engrailed binding sites in one of our dpp-lacZ reporter gene. Mutagenesis of these Engrailed binding sites results in ectopic expression of this reporter gene, but does not alter the normal stripe of expression at the A/P boundary. We propose that the en-hh-ptc regulatory loop that is responsible for segmental expression of wingless in the embryo is reutilized in imaginal disks to create a stripe of dpp expression along the A/P compartment boundary.  相似文献   

10.
Many embryonic lethal engrailed (enlethal) mutations are known to partially complement the cuticular defects of the original engrailed mutation, en1. To explore the nature of this complementation, the adult phenotypes of several different en1/enlethal transheterozygotes were compared with the corresponding patterns of engrailed protein expression in third larval instar imaginal discs (determined by immunofluorescence). Transheterozygotes of en1 and deletions of the locus (enDf) typically show slight complementation in the adult cuticle. The pattern of engrailed protein expression in some en1/enDf wing discs is indistinguishable from en1 homozygotes, but in others the pattern is nearly normal. en1/enDf leg discs appear to express engrailed protein normally. Transheterozygotes of en1 and EMS-induced, cytologically normal enlethal alleles have almost normal adult cuticle phenotypes and also exhibit normal patterns of engrailed protein expression in all of the thoracic imaginal discs. Surprisingly, the intensity of anti-engrailed staining in these discs is elevated relative to that in wild type. en2 is an unusual lethal allele in that it does not complement either the en1 adult cuticle phenotype or the protein expression pattern in imaginal discs. Moreover, the cytologically normal enlethal alleles also complement en2, at least partially. Both wing and leg imaginal discs from en2/enlethal transheterozygotes show abnormal patterns of engrailed protein expression. These results are discussed in the context of an autoregulatory model for engrailed regulation.  相似文献   

11.
12.
13.
At the beginning of the final larval (fifth) instar of Manduca sexta, imaginal precursors including wing discs and eye primordia initiate metamorphic changes, such as pupal commitment, patterning and cell proliferation. Juvenile hormone (JH) prevents these changes in earlier instars and in starved final instar larvae, but nutrient intake overcomes this effect of JH in the latter. In this study, we show that a molecular marker of pupal commitment, broad, is up-regulated in the wing discs by feeding on sucrose or by bovine insulin or Manduca bombyxin in starved final instar larvae. This effect of insulin could not be prevented by JH. In vitro insulin had no effect on broad expression but relieved the suppression of broad expression by JH. This effect of insulin was directly on the disc as shown by its reduction in the presence of insulin receptor dsRNA. In starved penultimate fourth instar larvae, broad expression in the wing disc was not up-regulated by insulin. The discs became responsive to this action of insulin during the molt to the fifth instar together with the ability to become pupally committed in response to 20-hydroxyecdysone. Thus, the Manduca bombyxin acts as a metamorphosis-initiating factor in the imaginal precursors.  相似文献   

14.
With the exception of the wing imaginal discs, the imaginal discs of Manduca sexta are not formed until early in the final larval instar. An early step in the development of these late-forming imaginal discs from the imaginal primordia appears to be an irreversible commitment to form pupal cuticle at the next molt. Similar to pupal commitment in other tissues at later stages, activation of broad expression is correlated with pupal commitment in the adult eye primordia. Feeding is required during the final larval instar for activation of broad expression in the eye primordia, and dietary sugar is the specific nutritional cue required. Dietary protein is also necessary during this time to initiate the proliferative program and growth of the eye imaginal disc. Although the hemolymph titer of juvenile hormone normally decreases to low levels early in the final larval instar, eye disc development begins even if the juvenile hormone titer is artificially maintained at high levels. Instead, creation of the late-forming imaginal discs in Manduca appears to be controlled by unidentified endocrine factors whose activation is regulated by the nutritional state of the animal.  相似文献   

15.
The wingless mutant flügellos ( fl ) of the silkworm lacks all four wings. Although wing discs of the fl seem to develop normally until the fourth larval instar, wing morphogenesis stops after the fourth larval ecdysis, probably caused by aberrant expression of an unidentified factor, referred to as fl . To characterize factor fl , the wing discs dissected from the wild-type (WT) and fl larvae were transplanted into other larvae and developmental changes of the discs were examined. When the wing disc from a WT larva was transplanted into another WT larva and allowed to grow until emergence, a small wing appeared that was covered with scales. Thus, the transplanted wing discs can develop autonomously, form scales and evert from adult skin. The WT wing discs transplanted into the fl larvae also developed at a high rate. However, the fl wing discs transplanted into the WT larvae did not develop during the larval to pupal developmental stages. These data suggest that the fl gene product (factor fl) works in the wing disc cells during wing morphogenesis. Its function cannot be complemented by hemolymph in the WT larva. It is also implied that the level of humoral factors and hormones required for wing morphogenesis are normally maintained in the fl larva.  相似文献   

16.
Further studies of the engrailed phenotype in Drosophila.   总被引:8,自引:3,他引:5       下载免费PDF全文
Although most mutations at the engrailed locus of Drosophila cause embryonic death when homozygous, they are viable in clones of cells. We describe the phenotype of such clones in the eye-antenna, proboscis, humerus, wing, legs, and terminalia. When in anterior compartments the clones are normal, but in most posterior compartments they are abnormal and fail to respect the anteroposterior compartment boundary. We find that the yield of engrailed-lethal clones in posterior compartments is often significantly lower than expected, indicating that these clones are lost during development. Mutant clones are abnormal in the analia and rare in the humerus, suggesting that both structures are of posterior provenance. These results support the hypothesis that the engrailed+ gene is required exclusively in cells of posterior compartments to specify their characteristic cell affinities and pattern.  相似文献   

17.
Like the Drosophila embryo, the abdomen of the adult consists of alternating anterior (A) and posterior (P) compartments. However the wing is made by only part of one A and part of one P compartment. The abdomen therefore offers an opportunity to compare two compartment borders (A/P is within the segment and P/A intervenes between two segments), and ask if they act differently in pattern formation. In the embryo, abdomen and wing P compartment cells express the selector gene engrailed and secrete Hedgehog protein whilst A compartment cells need the patched and smoothened genes in order to respond to Hedgehog. We made clones of cells with altered activities of the engrailed, patched and smoothened genes. Our results confirm (1) that the state of engrailed, whether 'off' or 'on', determines whether a cell is of A or P type and (2) that Hedgehog signalling, coming from the adjacent P compartments across both A/P and P/A boundaries, organises the pattern of all the A cells. We have uncovered four new aspects of compartments and engrailed in the abdomen. First, we show that engrailed acts in the A compartment: Hedgehog leaves the P cells and crosses the A/P boundary where it induces engrailed in a narrow band of A cells. engrailed causes these cells to form a special type of cuticle. No similar effect occurs when Hedgehog crosses the P/A border. Second, we look at the polarity changes induced by the clones, and build a working hypothesis that polarity is organised, in both compartments, by molecule(s) emanating from the A/P but not the P/A boundaries. Third, we show that both the A and P compartments are each divided into anterior and posterior subdomains. This additional stratification makes the A/P and the P/A boundaries fundamentally distinct from each other. Finally, we find that when engrailed is removed from P cells (of, say, segment A5) they transform not into A cells of the same segment, but into A cells of the same parasegment (segment A6).  相似文献   

18.
Pupal commitment of the wing imaginal disc of the silkworm, Bombyx mori, is completed shortly after the final (fifth) larval ecdysis. Pupal commitment was induced by in vitro culture with 20-hydroxyecdysone (20E). Shortly after the head capsule slippage (HCS) that occurs approximately 24 h before the final larval ecdysis, the discs become competent to respond to 20E, indicating that the process of pupal commitment begins in the late penultimate (fourth) instar. The simultaneous presence of methoprene (JHA) with 20E suppressed the pupal commitment at 4 ng/ml for the discs at 12 h after HCS and at 240 ng/ml for the discs at the ecdysis. Thus, the discs rapidly lose their sensitivity to JH at the end of the fourth instar. Day 0 fourth wing discs were not pupally committed by 20E when freshly dissected discs were exposed to 20E. By contrast, exposure to 20E after a pre-culture in a hormone free medium induced the pupal commitment. In those discs, the effective JHA concentration to suppress the 20E effects was 0.1 ng/ml. The present data suggest that pupal commitment proceeds through two stages from a reversible state that begins at around HCS to an irreversible state early in the fifth instar. The loss of sensitivity to JH is the primary impetus to begin the process and 20E is the factor that drives the discs to enter the reversible state.  相似文献   

19.
20.
Imaginal disks, the primordia of the adult appendages in Drosophila, are divided into anterior and posterior compartments. However, the developmental role of such compartments remains unclear. The expression of decapentaplegic (dpp), a pattern formation gene required for imaginal disk development, has the intriguing property of being expressed in a line at or near the boundary between these compartments. Here, we compare the distribution of dpp-driven reporter gene expression to the pattern of expression of the engrailed (en) gene, known to be required for the maintenance of the compartment boundary. Using confocal microscopy to obtain single cell resolution, we have determined that the majority of the en+ imaginal disk cells expressing the dpp-driven reporter genes about those cells expressing en, while a small percentage of dpp reporter gene expressing cells also express en. In posterior regions of en mutant disks, where compartmentalization is abnormal, we observe ectopic expression of the dpp-driven reporter genes. We conclude that the pattern of dpp expression in imaginal disks is delimited in part through the direct or indirect repression by engrailed. Our results lead us to question the widely held assumption that the anterior edge of en expression demarcates the A/P compartment boundary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号