首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Succinate dehydrogenase was purified from the particulate fraction of Desulfobulbus. The enzyme catalyzed both fumarate reduction and succinate oxidation but the rate of fumarate reduction was 8-times less than that of succinate oxidation. Quantitative analysis showed the presence of 1 mol of covalently bound flavin and 1 mol of cytochrome b per mol of succinate dehydrogenase. The enzyme contained three subunits with molecular mass 68.5, 27.5 and 22 kDa. EPR spectroscopy indicated the presence of at least two iron sulfur clusters. 2-Heptyl-4-hydroxy-quinoline-N-oxide inhibited the electron-transfer between succinate dehydrogenase and a high redox potential cytochrome c3 from Desulfobulbus elongatus.  相似文献   

2.
The membrane fraction of Bacillus subtilis catalyzes the reduction of fumarate to succinate by NADH. The activity is inhibited by low concentrations of 2-(heptyl)-4-hydroxyquinoline-N-oxide (HOQNO), an inhibitor of succinate: quinone reductase. In sdh or aro mutant strains, which lack succinate dehydrogenase or menaquinone, respectively, the activity of fumarate reduction by NADH was missing. In resting cells fumarate reduction required glycerol or glucose as the electron donor, which presumably supply NADH for fumarate reduction. Thus in the bacteria, fumarate reduction by NADH is catalyzed by an electron transport chain consisting of NADH dehydrogenase (NADH:menaquinone reductase), menaquinone, and succinate dehydrogenase operating in the reverse direction (menaquinol:fumarate reductase). Poor anaerobic growth of B. subtilis was observed when fumarate was present. The fumarate reduction catalyzed by the bacteria in the presence of glycerol or glucose was not inhibited by the protonophore carbonyl cyanide m-chlorophenyl hydrazone (CCCP) or by membrane disruption, in contrast to succinate oxidation by O2. Fumarate reduction caused the uptake by the bacteria of the tetraphenyphosphonium cation (TPP+) which was released after fumarate had been consumed. TPP+ uptake was prevented by the presence of CCCP or HOQNO, but not by N,N'-dicyclohexylcarbodiimide, an inhibitor of ATP synthase. From the TPP+ uptake the electrochemical potential generated by fumarate reduction was calculated (Deltapsi = -132 mV) which was comparable to that generated by glucose oxidation with O2 (Deltapsi = -120 mV). The Deltapsi generated by fumarate reduction is suggested to stem from menaquinol:fumarate reductase functioning in a redox half-loop.  相似文献   

3.
Production of superoxide radical during oxidation of dihydroorotate in rat liver mitochondria was not affected by antimycin A, thenoyltrifluoroacetone, or added ubiquinone but was inhibited by orotate, a product inhibitor of dihydroorotate dehydrogenase. It appears likely that superoxide is generated at the primary dehydrogenase. Dihydroorotate dehydrogenase differs from succinate dehydrogenase both in its utilization of ubiquinone and in the mechanism of cytochrome b reduction. Thenoyltrifluoroacetone completely inhibits fumarate synthesis and reduction of cytochrome b by succinate. Formation of orotate is only partially inhibited by thenolytrifluoroacetone and the inhibitor does not prevent reduction of cytochrome b by dihydroorotate. It is proposed that several pathways exist for linkage of the primary dihydrorotate dehydrogenase with the electron transport chain. One route involves electron transfer from ubiquinone to cytochrome c and is inhibited by thenoyltrifluoroacetone. A second route bypasses ubiquinone and is inhibited by antimycin A. A third pathway utilizes both ubiquinone and cytochrome b and is partiayly inhibited by either thenoyltrifluoroacetone or antimycin A.  相似文献   

4.
Fumarate reductase from Escherichia coli functions both as an anaerobic fumarate reductase and as an aerobic succinate dehydrogenase. A site-directed mutation of E. coli fumarate reductase in which FrdB Pro-159 was replaced with a glutamine or histidine residue was constructed and overexpressed in a strain of E. coli lacking a functional copy of the fumarate reductase or succinate dehydrogenase complex. The consequences of these mutations on bacterial growth, assembly of the enzyme complex, and enzymatic activity were investigated. Both mutations were found to have no effect on anaerobic bacterial growth or on the ability of the enzyme to reduce fumarate compared with the wild-type enzyme. The FrdB Pro-159-to-histidine substitution was normal in its ability to oxidize succinate. In contrast, however, the FrdB Pro-159-to-Gln substitution was found to inhibit aerobic growth of E. coli under conditions requiring a functional succinate dehydrogenase, and furthermore, the aerobic activity of the enzyme was severely inhibited upon incubation in the presence of its substrate, succinate. This inactivation could be prevented by incubating the mutant enzyme complex in an anaerobic environment, separating the catalytic subunits of the fumarate reductase complex from their membrane anchors, or blocking the transfer of electrons from the enzyme to quinones. The results of these studies suggest that the succinate-induced inactivation occurs by the production of hydroxyl radicals generated by a Fenton-type reaction following introduction of this mutation into the [3Fe-4S] binding domain. Additional evidence shows that the substrate-induced inactivation requires quinones, which are the membrane-bound electron acceptors and donors for the succinate dehydrogenase and fumarate reductase activities. These data suggest that the [3Fe-4S] cluster is intimately associated with one of the quinone binding sites found n fumarate reductase and succinate dehydrogenase.  相似文献   

5.
The mechanism of fumarate reduction in Geobacter sulfurreducens was investigated. The genome contained genes encoding a heterotrimeric fumarate reductase, FrdCAB, with homology to the fumarate reductase of Wolinella succinogenes and the succinate dehydrogenase of Bacillus subtilis. Mutation of the putative catalytic subunit of the enzyme resulted in a strain that lacked fumarate reductase activity and was unable to grow with fumarate as the terminal electron acceptor. The mutant strain also lacked succinate dehydrogenase activity and did not grow with acetate as the electron donor and Fe(III) as the electron acceptor. The mutant strain could grow with acetate as the electron donor and Fe(III) as the electron acceptor if fumarate was provided to alleviate the need for succinate dehydrogenase activity in the tricarboxylic acid cycle. The growth rate of the mutant strain under these conditions was faster and the cell yields were higher than for wild type grown under conditions requiring succinate dehydrogenase activity, suggesting that the succinate dehydrogenase reaction consumes energy. An orthologous frdCAB operon was present in Geobacter metallireducens, which cannot grow with fumarate as the terminal electron acceptor. When a putative dicarboxylic acid transporter from G. sulfurreducens was expressed in G. metallireducens, growth with fumarate as the sole electron acceptor was possible. These results demonstrate that, unlike previously described organisms, G. sulfurreducens and possibly G. metallireducens use the same enzyme for both fumarate reduction and succinate oxidation in vivo.  相似文献   

6.
The question was investigated as to whether the bacterial menaquinone (MK) is a component of the electron transport chain catalyzing succinate respiration in Bacillus subtilis. Three different methods were applied, and the following consistent results were obtained. (i) Solvent extraction of MK from the bacterial membrane caused total inhibition of the respiratory activities with succinate and NADH, while the activity of succinate dehydrogenase remained unaffected. The respiratory activities were restored onincorporation of vitamin K1 into the membrane preparation. (ii) The membrane fraction of a B. subtilis mutant containing 15% of the wild-type amount of MK, respired succinate and NADH at reduced activities. Wild-type activities were restored on fusion of the preparation to liposomes containing vitamin K1. (iii) The membrane fraction of B. subtilis catalyzed succinate oxidation by various water-soluble naphtho- or benzoquinones at specific activities exceeding to that of succinate respiration. The results suggest that MK is involved in succinate respiration, although its redox potential is unfavorable.Abbreviations MK menaquinone - MKH2 reduced menaquinone - E0' standard redox potential at pH 7 - PMS phenazine methosulfate - DCPIP 2,6-Dichlorophenol-indophenol - Q ubiquinone - Q0 2,3-dimethoxy-5-methyl-1,4-bezoquinone - DMN, 2,3 dimethyl-1,4-naphthoquinone - DMK demethylmenaquinone  相似文献   

7.
G. Unden  S.P.J. Albracht  A. Krger 《BBA》1984,767(3):460-469
The isolated menaquinol: fumarate oxidoreductase (fumarate reductase complex) from Vibrio succinogenes was investigated with respect to the redox potentials and the kinetic response of the prosthetic groups. The following results were obtained. (1) The redox state of the components was measured as a function of the redox potential established by the fumarate/succinate couple, after freezing of the samples (173 K). From these measurements, the midpoint potential of the [2Fe-2S] cluster (−59 mV), the [4Fe-4S] cluster (−24 mV) and the flavin/flavosemiquinone couple (about −20 mV) was obtained. (2) Potentiometric titration of the enzyme in the presence of electron-mediating chemicals gave, after freezing, apparent midpoint potentials that were 30–100 mV more negative than those found with the fumarate/succinate couple. (3) The rate constants of reduction of the components on the addition of succinate or 2,3-dimethyl-1,4-naphthoquinol were as great as or greater than the corresponding turnover numbers of the enzyme in quinone reduction by succinate or fumarate reduction by the quinol. In the oxidation of the reduced enzyme by fumarate, cytochrome b oxidation was about as fast as the corresponding turnover number of quinol oxidation by fumarate, while the [2Fe-2S] and half of the [4Fe-4S] cluster responded more than 2-times slower. The rate constant of the other half of the 4-Fe cluster was one order of magnitude smaller than the turnover number.  相似文献   

8.
A late step in anaerobic heme synthesis, the oxidation of protoprophyrinogen with fumarate as electron acceptor, was studied in extracts and particles of Escherichia coli mutants deficient in quinones or cytochromes. Mutants specifically deficient in menaquinone did not couple protoporphyrinogen oxidation to fumarate reduction, whereas mutants containing menaquinone but deficient in either ubiquinone or cytochromes exhibited this activity. These findings indicate that this coupled reaction is dependent upon menaquinone as hydrogen carrier but independent of ubiquinone and cytochromes. Other characteristics of this coupled reaction were also studied. The activity was located exclusively in the membrane fraction of cell-free extracts. Coproporphyrinogen III could not replace protoporphyrinogen as substrate. Methylene blue, triphenyl tetrazolium and nitrate, but not nitrite, could replace fumarate as anaerobic hydrogen acceptor. These findings have implications for the mechanism and regulation of microbial heme and chlorophyll synthesis and for the physiology of cytochrome synthesis in anaerobic microorganisms.  相似文献   

9.
R M Rakita  B R Michel  H Rosen 《Biochemistry》1989,28(7):3031-3036
A microbicidal system, mediated by neutrophil myeloperoxidase, inhibits succinate-dependent respiration in Escherichia coli at rates that correlate with loss of microbial viability. Succinate dehydrogenase, the initial enzyme of the succinate oxidase respiratory pathway, catalyzes the reduction of ubiquinone to ubiquinol, which is reoxidized by terminal oxidase complexes. The steady-state ratio of ubiquinol to total quinone (ubiquinol + ubiquinone) reflects the balance between dehydrogenase-dependent ubiquinone reduction and terminal oxidase-dependent ubiquinol oxidation. Myeloperoxidase had no effect on total quinone content of E. coli but altered the steady-state ratio of ubiquinol to total quinone. The ratio doubled for organisms incubated with the myeloperoxidase system for 10 min, suggesting decreased ubiquinol oxidase activity, which was confirmed by observation of a 50% decrease in oxidation of the ubiquinol analogue 2,3-dimethoxy-5-methyl-6-decyl-1,4-benzoquinol. Despite inhibition of ubiquinol oxidase, overall succinate oxidase activity remained unchanged, suggesting that succinate dehydrogenase activity was preserved and that the dehydrogenase was rate limiting. Microbial viability was unaffected by early changes in ubiquinol oxidase activity. Longer (60 min) exposure of E. coli to the myeloperoxidase system resulted in only modest further inhibition of the ubiquinol oxidase, but the ubiquinol to total quinone ratio fell to 0%, reflecting complete loss of succinate dehydrogenase activity. Succinate oxidase activity was abolished, and there was extensive loss of microbial viability. Early myeloperoxidase-mediated injury to ubiquinol oxidase appeared to be compensated for by higher steady-state levels of ubiquinol which sustained electron turnover by mass effect. Later myeloperoxidase-mediated injuries eliminated succinate-dependent ubiquinone reduction, through inhibition of succinate dehydrogenase, with loss of succinate oxidase activity, effects which were associated with, although not clearly causal for, microbicidal activity.  相似文献   

10.
The growth of the syntrophic propionate-oxidizing bacterium strain MPOB in pure culture by fumarate disproportionation into carbon dioxide and succinate and by fumarate reduction with propionate, formate or hydrogen as electron donor was studied. The highest growth yield, 12.2 g dry cells/mol fumarate, was observed for growth by fumarate disproportionation. In the presence of hydrogen, formate or propionate, the growth yield was more than twice as low: 4.8, 4.6, and 5.2 g dry cells/mol fumarate, respectively. The location of enzymes that are involved in the electron transport chain during fumarate reduction in strain MPOB was analyzed. Fumarate reductase, succinate dehydrogenase, and ATPase were membrane-bound, while formate dehydrogenase and hydrogenase were loosely attached to the periplasmic side of the membrane. The cells contained cytochrome c, cytochrome b, menaquinone-6 and menaquinone-7 as possible electron carriers. Fumarate reduction with hydrogen in membranes of strain MPOB was inhibited by 2-(heptyl)-4-hydroxyquinoline-N-oxide (HOQNO). This inhibition, together with the activity of fumarate reductase with reduced 2,3-dimethyl-1,4-naphtoquinone (DMNH2) and the observation that cytochrome b of strain MPOB was oxidized by fumarate, suggested that menequinone and cytochrome b are involved in the electron transport during fumarate reduction in strain MPOB. The growth yields of fumarate reduction with hydrogen or formate as electron donor were similar to the growth yield of Wolinella succinogenes. Therefore, it can be assumed that strain MPOB gains the same amount of ATP from fumarate reduction as W. succinogenes, i.e. 0.7 mol ATP/mol fumarate. This value supports the hypothesis that syntrophic propionate-oxidizing bacteria have to invest two-thirds of an ATP via reversed electron transport in the succinate oxidation step during the oxidation of propionate. The same electron transport chain that is involved in fumarate reduction may operate in the reversed direction to drive the energetically unfavourable oxidation of succinate during syntrophic propionate oxidation since (1) cytochrome b was reduced by succinate and (2) succinate oxidation was similarly inhibited by HOQNO as fumarate reduction. Received: 18 March 1997 / Accepted: 10 November 1997  相似文献   

11.
External NADH and succinate were oxidized at similar rates by soybean (Glycine max) cotyledon and leaf mitochondria when the cytochrome chain was operating, but the rate of NADH oxidation via the alternative oxidase was only half that of succinate. However, measurements of the redox poise of the endogenous quinone pool and reduction of added quinones revealed that external NADH reduced them to the same, or greater, extent than did succinate. A kinetic analysis of the relationship between alternative oxidase activity and the redox state of ubiquinone indicated that the degree of ubiquinone reduction during external NADH oxidation was sufficient to fully engage the alternative oxidase. Measurements of NADH oxidation in the presence of succinate showed that the two substrates competed for cytochrome chain activity but not for alternative oxidase activity. Both reduced Q-1 and duroquinone were readily oxidized by the cytochrome oxidase pathway but only slowly by the alternative oxidase pathway in soybean mitochondria. In mitochondria isolated from the thermogenic spadix of Philodendron selloum, on the other hand, quinol oxidation via the alternative oxidase was relatively rapid; in these mitochondria, external NADH was also oxidized readily by the alternative oxidase. Antibodies raised against alternative oxidase proteins from Sauromatum guttatum cross-reacted with proteins of similar molecular size from soybean mitochondria, indicating similarities between the two alternative oxidases. However, it appears that the organization of the respiratory chain in soybean is different, and we suggest that some segregation of electron transport chain components may exist in mitochondria from nonthermogenic plant tissues.  相似文献   

12.
A late step in anaerobic heme synthesis, the oxidation of protoporphyrinogen with fumarate as electron acceptor, was studied in extracts and particles of Escherichia coli mutants deficient in quinones or cytochromes. Mutants specifically deficient in menaquinone did not couple protoporphyrinogen oxidation to fumarate reduction, whereas mutants containing menaquinone but deficient in either ubiquinone or cytochromes exhibited this activity. These findings indicate that this coupled reaction is dependent upon menaquinone as hydrogen carrier but independent of ubiquinone and cytochromes. Other characteristics of this coupled reaction were also studied. The activity was located exclusively in the membrane fraction of cell-free extracts. Coproporphyrinogen III could not replace protoporphyrinogen as substrate. Methylene blue, triphenyl tetrazolium and nitrate, but not nitrite, could replace fumarate as anaerobic hydrogen acceptor. These findings have implications for the mechanism and regulation of microbial heme and chlorophyll synthesis and for the physiology of cytochrome synthesis in anaerobic microorganisms.  相似文献   

13.
The rates of the oxidized (Eox) and reduced (Ered) (by NAD . H through the ubiquinone pool) succinate dehydrogenase inhibition by N-ethyl-maleimide are equal and obey pseudo-first order kinetics. The protection of the enzyme against irreversible alkylation was used to quantitate the dissociation constants for Eox and Ered complexes with fumarate, succinate and malonate under conditions when no intramolecular redox reactions might occur. the membrane-bound succinate dehydrogenase catalyzes the succinate : phenazine-methosulphate reductase reaction in the presence of thenoyltrifluoroacetone by a Slater-Bonner mechanism. A comparison of the constants measured by the protection with those derived from the steady-state kinetics shows that succinate affinity for Eox is about 10 times higher than that for Ered; the reverse relations were found for fumarate, whereas the affinity for malonate only slightly depends on the redox state of the enzyme. The data obtained suggest that the dicarboxylate binding at the active site induces changes in the enzyme redox potential. The surface charge does not contribute significantly to the energy of the dicarboxylate binding to the active site of the membrane-bound enzyme.  相似文献   

14.
Incorporation of the electron-transport enzymes of Vibrio succinogenes into liposomes was used to investigate the question of whether, in this organism, a cytochrome b is involved in electron transport from formate to fumarate on the formate side of menaquinone. (1) Formate dehydrogenase lacking cytochrome b was prepared by splitting the cytochrome from the formate dehydrogenase complex. The enzyme consisted of two different subunits (Mr 110 000 and 20 000), catalyzed the reduction of 2,3-dimethyl-1,4-naphthoquinone by formate, and could be incorporated into liposomes. (2) The modified enzyme did not restore electron transport from formate to fumarate when incorporated into liposomes together with vitamin K-1 (instead of menaquinone) and fumarate reductase complex. In contrast, restoration was observed in liposomes that contained formate dehydrogenase with cytochrome b (Em = -224 mV), in addition to the subunits mentioned above (formate dehydrogenase complex). (3) In the liposomes containing formate dehydrogenase complex and fumarate reductase complex, the response of the cytochrome b of the formate dehydrogenase complex was consistent with its interaction on the formate side of menaquinone in a linear sequence of the components. The low-potential cytochrome b associated with fumarate reductase complex was not reducible by formate under any condition. It is concluded that the low-potential cytochrome b of the formate dehydrogenase complex is an essential component in the electron transport from formate to menaquinone. The low-potential cytochrome b of the fumarate reductase complex could not replace the former cytochrome in restoring electron-transport activity.  相似文献   

15.
The respiratory chain of Escherichia?coli contains three quinones. Menaquinone and demethylmenaquinone have low midpoint potentials and are involved in anaerobic respiration, while ubiquinone, which has a high midpoint potential, is involved in aerobic and nitrate respiration. Here, we report that demethylmenaquinone plays a role not only in trimethylaminooxide-, dimethylsulfoxide- and fumarate-dependent respiration, but also in aerobic respiration. Furthermore, we demonstrate that demethylmenaquinone serves as an electron acceptor for oxidation of succinate to fumarate, and that all three quinol oxidases of E.?coli accept electrons from this naphtoquinone derivative.  相似文献   

16.
Bacterial quinones were extracted with pentane, and homologues or other quinones were reincorporated. In spite of the redox potential difference of 110 mV, menaquinone and demethylmenaquinone could replace each other in aerobic electron transport and fumarate respiration ofHaemophilus influenzae RAMC 18 Bensted andProteus mirabilis Harding & Nicholson. The enzymes involved may recognize the naphthoquinone structure and are not specific for menaquinone or demethylmenaquinone. Ubiquinone was not replaced in aerobic electron transport by naphthoquinones withPseudomonas fluorescens 28/5 Rhodes orAcinetobacter sp. 661/60 Mannheim, probably owing to the specificity for benzoquinones of the enzymes involved, since the redox potential difference between demethylmenaquinone and ubiquinone is only 76 mV.Haemophilus parainfluenzae 429 Pittman, which resembles aerobic bacteria with respect to the terminal electron transport system, could incorporate demethylmenaquinone or menaquinone. This organism seems to be defective in the synthesis of naphthoquinones but possesses the enzyme system for fumarate respiration.Haemophilus influenzae RAMC 18 Bensted, which produces only demethylmenaquinone, seems to be defective in synthesizing ubiquinone, but it also possesses the enzymes for a ubiquinonemediated aerobic respiration.  相似文献   

17.
Respiratory processes often use quinone oxidoreduction to generate a transmembrane proton gradient, making the 2H+/2e quinone chemistry important for ATP synthesis. There are a variety of quinones used as electron carriers between bioenergetic proteins, and some respiratory proteins can functionally interact with more than one quinone type. In the case of complex II homologs, which couple quinone chemistry to the interconversion of succinate and fumarate, the redox potentials of the biologically available ubiquinone and menaquinone aid in driving the chemical reaction in one direction. In the complex II homolog quinol:fumarate reductase, it has been demonstrated that menaquinol oxidation requires at least one proton shuttle, but many of the remaining mechanistic details of menaquinol oxidation are not fully understood, and little is known about ubiquinone reduction. In the current study, structural and computational studies suggest that the sequential removal of the two menaquinol protons may be accompanied by a rotation of the naphthoquinone ring to optimize the interaction with a second proton shuttling pathway. However, kinetic measurements of site-specific mutations of quinol:fumarate reductase variants show that ubiquinone reduction does not use the same pathway. Computational docking of ubiquinone followed by mutagenesis instead suggested redundant proton shuttles lining the ubiquinone-binding site or from direct transfer from solvent. These data show that the quinone-binding site provides an environment that allows multiple amino acid residues to participate in quinone oxidoreduction. This suggests that the quinone-binding site in complex II is inherently plastic and can robustly interact with different types of quinones.  相似文献   

18.
Using N2 cavitation, we established a protocol to prepare the active mitochondria from Plasmodium falciparum showing a higher succinate dehydrogenase activity than previously reported and a dihydroorotate-dependent respiration. The fact that fumarate partially inhibited the dihydroorotate dependent respiration suggests that complex II (succinate–ubiquinone reductase/quinol–fumarate reductase) in the erythrocytic stage cells of P. falciparum functions as a quinol–fumarate reductase.  相似文献   

19.
Geobacter sulfurreducens strain PCA oxidized acetate to CO2 via citric acid cycle reactions during growth with acetate plus fumarate in pure culture, and with acetate plus nitrate in coculture with Wolinella succinogenes. Acetate was activated by succinyl-CoA:acetate CoA-transferase and also via acetate kinase plus phosphotransacetylase. Citrate was formed by citrate synthase. Soluble isocitrate and malate dehydrogenases NADP+ and NAD+, respectively. Oxidation of 2-oxoglutarate was measured as benzyl viologen reduction and strictly CoA-dependent; a low activity was also observed with NADP+. Succinate dehydrogenase and fumarate ductase both were membrane-bound. Succinate oxidation was coupled to NADP+ reduction whereas fumarate reduction was coupled to NADPH and NADH Coupling of succinate oxidation to NADP+ or cytochrome(s) reduction required an ATP-dependent reversed electron transport. Net ATP synthesis proceeded exclusively through electron transport phosphorylation. During fumarate reduction, both NADPH and NADH delivered reducing equivalents into the electron transport chain, which contained a menaquinone. Overall, acetate oxidation with fumarate proceeded through an open loop of citric acid cycle reactions, excluding succinate dehydrogenase, with fumarate reductase as the key reaction for electron delivery, whereas acetate oxidation in the syntrophic coculture required the complete citric acid cycle.  相似文献   

20.
The inhibition of NADH oxidation but not of succinate oxidation by the low ubiquinone homologs UQ-2 and UQ-3 is not due to a lower rate of reduction of ubiquinone by NADH dehydrogenase: experiments in submitochondrial particles and in pentane-extracted mitochondria show that UQ-3 is reduced at similar rates using either NADH or succinate as substrates. The fact that reduced UQ-3 cannot be reoxidized when reduced by NADH but can be reoxidized when reduced by succinate may be explained by a compartmentation of ubiquinone.Using reduced ubiquinones as substrates of ubiquinol oxidase activity in intact mitochondria and in submitochondrial particles we found that ubiquinol-3 is oxidized at higher rates in submitochondrial particles than in mitochondria. The initial rates of ubiquinol oxidation increased with increasing lengths of isoprenoid side chains in mitochondria, but decreased in submitochondrial particles. These findings suggest that the site of oxidation of reduced ubiquinone is on the matrix side of the membrane; reduced ubiquinones may reach their oxidation site in mitochondria only crossing the lipid bilayer: the rate of diffusion of ubiquinol-3 is presumably lower than that of ubiquinol-7 due to the differences in hydrophobicity of the two quinones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号