首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT The new microsporidium, Napamichum cellatum, a parasite of the adipose tissue of midge larva of the genus Endochironomus in Sweden, is described based on light microscopic and ultrastructural characteristics. Plurinucleate Plasmodia with nuclei arranged as diplokarya divide, probably by plasmotomy, producing a small number of diplokaryotic merozoites. The number of merogonial cycles is unknown. Each diplokaryotic sporont yields eight monokaryotic sporoblasts in a thin-walled, more or less fusiform sporophorous vesicle. A small number of multisporoblastic sporophorous vesicles were observed, in which a part of the sporoblasts were anomalous. The sporogony probably begins with a meiotic division. The mature spores are slightly pyriform. Fixed and stained spores measure 2.1-2.4 × 3.7-4.5 μm. The five-layered spore wall is of the Napamichum type. The polar filament is anisofilar with seven to eight coils (142-156 and 120 nm wide). The angle of tilt is 55-65°. The polaroplast has an anterior lamellar and a posterior tubular part. The granular, tubular and crystal-like inclusions of the episporontal space disappear more or less completely when the spores mature. The crystal-like inclusions are prominent in haematoxylin staining, but not visible with the Giemsa technique. The microsporidium is compared to other octosporoblastic microsporidia of midge larva and to the species of the genera Chapmanium and Napamichum.  相似文献   

2.
A hitherto undescribed microsporidan has been found in the Australian freshwater copepod, Boeckella triarticulata, collected from Lake Burley Griffin, Canberra. We name this protozoan Tuzetia boeckella n. sp. and describe it in this paper. Large numbers of spores were found in the muscle of both sexes and all stages of the animals. The pyriform spores measured 5.1 × 2.7 μm with the extruded polar filament measuring 102 μm. Ultrastructural studies revealed the presence of a pansporoblastic membrane around each spore. The polar filament was arranged in a single row of 13–14 turns and decreased in diameter toward the posterior end. Few details of the life cycle were elucidated; however, evidence is presented for each sporont forming eight spores. Differentiating characters to distinguish this species from the six other known members of the genus are given.  相似文献   

3.
The ultrastructural cytology and reproduction of the hyperparasitic microsporidium Amphiamblys capitellides (Caullery and Mesnil, 1897) is described. Merogonial reproduction was not observed. The sporogony comprises two sequences: a sac-bound sporogony in close contact with the cytoplasm of the host and a free sporogony in parasitophorous vacuoles. The free sporogony, which probably precedes the sac-bound, yields a small number of rounded spores. The sac-bound sporogony is polysporoblastic, generating two rows of elongated spores. All stages have isolated nuclei. Both spore types have an extrusion apparatus of the metchnikovellidean type, with a polar sac devoid of anchoring disc, a polar filament with one manubroid and one bulbous part, and a posterior semicircular membrane fold enclosing rounded or tubular structures. Hosts are gregarines of the species Ancora sagittata living in the intestine of polychaetes of the genus Capitella, probably the species Capitella giardi. The cytology, life cycle and classification are discussed. The species is redescribed and the diagnosis of the genus Amphiamblys Caullery and Mesnil, 1914 is emended.  相似文献   

4.
ABSTRACT. The microsporidium Janacekia adipophila n. sp., a parasite of Ptychoptera paludosa larvae in Sweden, is described based on light microscopic and ultrastructural characteristics. Merogonial stages and sporonts are diplokaryotic. Merozoites are formed by rosette-like division. Sporonts develop into sporogonial plasmodia with isolated nuclei. These plasmodia give rise to 8–16 sporoblasts by rosette-like budding. A sporophorous vesicle is initiated by the sporogonial plasmodium. Sporoblasts and spores are enclosed in individual sporophorous vesicles. Granular inclusions of the vesicles, visible using light microscopy, discriminate sporogonial stages from stages of the merogony. The monokaryotic, fresh spores are oval with blunt ends, measuring 4.2-6.3 × 9.1-11.2 μm. Macrospores are formed in small numbers. The spore wall has three subdivisions and the exospore is electron-dense. The polaroplast has two parts: closely arranged lamellae anteriorly, wider sac-like compartments posteriorly. The isofilar polar filament, 191–264 nm wide, has 12-13 coils, which are arranged in one layer in the posterior half of the spore. The electron-dense inclusions of the sporophorous vesicle are modified during sporogony, and vesicles with mature spores are traversed by 21–27 nm wide tubules, which connect the exospore with the envelope of the vesicle. The walls of the tubules, the envelope of the vesicles, and the surface layer of the exospore are all identical double-layered structures. The microsporidium is compared to microsporidia of Ptychopteridae and Tipulidae and to related microsporidia of the family Tuzetiidae.  相似文献   

5.
Triangulamyxa amazonica n. gen. and n. sp. (Myxozoa, Ortholineidae), found in the lumen of the intestine of the freshwater fish Sphoeroides testudineus, is described. The fish were collected from the Amazon River near the city of Algodoal, State of the Pará, Brazil. Numerous irregular plasmodia containing different stages of sporogony, including spores, were observed. The plasmodia were lying free in the lumen or had slender pseudopodia-like cytoplasmic processes in contact with intestinal epithelial cells with microvilli projections. Spores, which are equilaterally triangular in valvar view with rounded pointed ends and ellipsoidal in transverse section, are 8.5 μm long, 7.6 μm wide, and 3.8 μm thick. The anterior end of the spores contains two equal drop-shaped polar capsules measuring 2.6 μm in length, each having an isofilar polar filament with 5–6 turns. The characteristics of the spore shape, the spore wall structure and its ridge organization, the plasmodial characteristics and the identity of the host suggest that the parasite is a new genus and species, which is herein designated T. amazonica.  相似文献   

6.
Hyalinocysta expilatoria n. sp. is described from a larva of Odagmia ornata collected in Sweden. Infection was restricted to the adipose tissue which was transformed into a syncytium. The earliest stage observed was diplokaryotic merozoites, which mature directly into diplokaryotic sporonts. Each sporont produces a sporophorous vesicle (pansporoblast), which persists, also enclosing mature spores. Usually nuclear divisions result in a plasmodium with 8 nuclei, which fragments into 8 sporoblasts, each of which develops into a spore without further division. Occasionally an aberrant number of spores (2, 4, 6) is formed. The spores are pyriform with a flattened area at the posterior pole. Spores in sporophorous vesicles with 8 spores are 4.0–6.0 μm long, in vesicles with 4 spores 4.0–5.0 μm, and in vesicles with 2 spores 7.0–8.0 μm. In some vesicles the spores develop asynchronously, and 2, 4, or 6 mature spores are found together with 6, 4, or 2 immature. There was also a small number of vesicles with supernumerary spores, less than 8 normally developed. The 325–350 nm thick spore wall is composed of three layers. The polar filament is anisofilar with 7 coils in a single layer. The anterior 5–6 coils are wide, the posterior 2-1 thin. The angle of tilt of the anterior filament coil is approximately 50°. The spore has a single nucleus. The sporophorous vesicle is delimited by a thin membrane, also visible in haematoxylin stained preparations. Vesicles with mature spores are void of metabolic inclusions.  相似文献   

7.
Microsporidia parasitizing the adipose body of mosquito larvae of Anopheles beklemishevi and Aedes punctor has been studied. Two new genera of microsporidia are described based on lightmicroscopic and ultrastructural characteristics of spores and sporogony stages. The spore wall of Crepidula beklemishevi gen. n. et sp. n. is formed by two-membrane exospore, thick exospore, bilayer endospore and thin plasmolemma. Spores with single nucleus, polar filament anisofilar, with 6-7 coils (2+ 4-5), polaroplast consisting of three parts: macrochelicoidal, microhelicoidal and lamellar. Fixed spores 4.2 +/- 0.22 x 2 +/- 0.01 microns. The sporogony of Dimeiospora palustris gen. et. n. results in spore formation of two different types. Spores of the first type are oviform, with thick wall, single-nuclear, 6.1 x 4.9 microns. Spore wall with three layers, about 370 nm. Exospore electron-dense, subexospore moderately electrondense. Exospore and subexospore irregularly pleated on the almost spore surface and slightly thinner on anterior end only. Endospore electron-translucent. Polar filament anisofilar, with 9 coils (3 + 6). Polaroplas consists of three parts: lamellar, fine bubbled, and coarse bubbled. Spores of the second type broad-ovate, with apical pole narrower, distal pole concave, 4.6 x 3.7 microns. Spore wall with three layer, 355 nm. Exospore on the apical end irregularly pleated, consists of thin electrondense exospore, subexospore of variable electron density, endospore electron-translucent. Polar filament anisofilar, with 13 coils (3 + 10). Polaroplast has two parts: lamellar and vesicular.  相似文献   

8.
Vavraia lutzomyiae (Microsporida; Pleistophoridae) is a new species parasitic in the tropical phlebotomine sandfly, Lutzomyia longipalpis (Diptera, Psychodidae, Phlebotominae), a major vector of Leishmania chagasi in Latin America where human visceral leishmaniasis is endemic. Infected larvae and pupae were parasitized in the abdomen, and some adults were parasitized in Malpighian tubules and midgut. The sporogonial plasmodium divided by multiple divisions into up to 64 uninucleate sporoblasts. These stages were surrounded outside the plasmalemma by a thick, amorphous dense coat and transformed into a merontogenetic sporophorous vesicle within which the sporonts developed into sporoblasts. The mature microsporidian spores were broadly ellipsoidal and measured 6.1+/-0.43 x 3.1+/-0.15 microm. The spore wall consisted of a transparent endospore (approximately 100 nm) and a thin electron dense exospore (approximately 30 nm) with the outer limit slightly undulated. Spores contained a polar filament arranged peripherally in a single layer of eight to nine wide anterior coils (approximately 125 nm diameter), and three to four narrow posterior coils (approximately 70 nm diameter). Transverse sections revealed a concentric layer organization with the internal layer surrounded by numerous (up to 25) longitudinal microfibrils. The angle of tilt of the polar filament was about 65-68 degrees.  相似文献   

9.
Meglitschia mylei n. sp. found in the gall bladder of the teleostean fish Myleus rubripinnis (Serrasalmidae) from the middle Amazonian region of Brazil is described using light and transmission electron microscopy. The spores observed in the bile averaged 24.6±0.8 μm long, 8.7±0.4 μm wide and 5.1±0.3 μm thick and were strongly furcate and arcuate ∩-shaped composed of two symmetric equal-sized valves, up to ~70 nm thick. Each valve possessed one opposed tapering appendage, 20.1±0.7 μm long, oriented parallel towards the basal tip of the appendages and joined along a right suture line forming a thick strand. The strand goes around the central part of the spore, which in turn surrounds two equal and symmetric spherical polar capsules (PC), 2.1±0.3 μm in diameter, located at the same level. Each capsule contains a polar filament with five (rarely six) coils. The binucleate sporoplasm was irregular in shape, contained several sporoplasmosomes, ~175 nm in diameter and filled all the space of the two caudal appendages. Based on the arc shape of the spore with two tapering caudal appendages oriented to the basis of spores, on the number and position of the PC and of the polar filament coils and arrangements, and on the host specificity, we propose the name M. mylei n. sp. for this new myxozoan. Accordingly, this is the second described species of this genus.  相似文献   

10.
Light and electron microscopy studies of a myxosporean, parasitic in the intertubular interstitial tissue of the kidney of the freshwater teleost fish Metynnis maculatus Kner, 1860 (Characidae) from the lower Amazon River (Brazil), are described. We observed polysporic histozoic plasmodia delimited by a double membrane and with several pinocytic channels and containing several life cycle stages, including mature spores. The spore body was of pyriform shape and was 21.0 microm long, 8.9 microm wide and 7.5 microm thick. Elongated-pyriform polar capsules were of equal size (12.7 x 3.2 microm) and contained a polar filament with 14 or 15 coils. The spore features fit those of the genus Myxobolus. Densification of the capsular primordium matrix, which increased in density from the inner core outwards, differentiating at the periphery into small microfilaments measuring 45 nm each, and tubuli arranged in aggregates and dispersed within the capsular matrix of the mature spores, are described. Based on the morphological differences and specificity of the host, we propose the creation of a new species named Myxobolus maculatus n. sp.  相似文献   

11.
The microsporidium Nudispora biformis n. g., n. sp., a parasite of a larva of the damsel fly Coenagrion hastulatum in Sweden, is described based on light microscopic and ultrastructural characteristics. Merogonial stages and sporonts are diplokaryotic. Sporogony comprises meiotic and mitotic divisions, and finally eight monokaryotic sporoblasts are released from a lobed plasmodium. Sporophorous vesicles are not formed. The monokaryotic spores are oval, measuring 1.4–1.8 × 2.8–3.4 μm in living condition. The thick spore wall has a layered exospore, with a median double-layer. The polaroplast has two lamellar parts, with the closest packed lamellae anteriorly. The isofilar polar filament is arranged in 6 (to 7) coils in the posterior half of the spore. Laminar and tubular extracellular material of exospore construction is present in the proximity of sporogonial stages. In addition to normal spores teratological spores are produced. The microsporidium is compared to the microsporidia of the Odonata; its possible relations to the genus Pseudothelohania and to the Thelohania-like microsporidia are discussed. The new genus is provisionally included in the family Thelohaniidae.  相似文献   

12.
We describe the microsporidian Amazonspora hassar n. gen., n. sp. from the gill xenomas of the teleost Hassar orestis (Doradidae) collected in the estuarine region of the Amazon River. The parasite appeared as a small whitish xenoma located in the gill filaments near the blood vessels. Each xenoma consisted of a single hypertrophic host cell (HHC) in the cytoplasm of which the microsporidian developed and proliferated. The xenoma wall was composed of up to approximately 22 juxtaposed crossed layers of collagen fibers. The plasmalemma of the HHC presented numerous anastomosed, microvilli-like structures projecting outward through the 1-3 first internal layers of the collagen fibrils. The parasite was in direct contact with host cell cytoplasm in all stages of the cycle (merogony and sporogony). Sporogony appears to divide by plasmotomy, giving rise to 4 uninucleate sporoblasts, which develop into uninucleate spores. The ellipsoidal spores measured 2.69 +/- 0.45 x 1.78 +/- 0.18 microm, and the wall measured approximately 75 nm. The anchoring disk of the polar filament was subterminal, being shifted laterally from the anterior pole. The polar filament was arranged into 7-8 coils in a single layer in the posterior half of the spore, surrounding the posterior vacuole. The polaroplast surrounded the uncoiled portion of the polar filament, and it was exclusively lamellar. The spores and different life-cycle stages were intermingled within the cytoplasm of the HHC, surrounding the central hypertrophic deeply branched nucleus. The ultrastructural morphology of this microsporidian parasite suggests the erection of a new genus and species.  相似文献   

13.
Summary The mature spore possesses a thick spore coat and a particle-bearing spore membrane. The highly laminated polaroplast membranes are located at the anterior pole of the spore. Close to its base, the polar filament is surrounded by the polaroplast membrane. The polar filament runs spirally towards the posterior pole of the spore. A large portion of the polar filament is arranged in two layers. A similar arrangement was also observed in immature spores and in the sporoblast stage, although it was not so orderly arranged in the latter. The developing polaroplast membrane was observed in the immature spore, but not in the sporoblast. The sporoblast wall is much thinner than the spore coat, but has the same texture. Endoplasmic reticulum is the most prominent cytoplasmic organelle in the developing stages of Nosema apis. Porous nuclear envelopes are also observed in developing stages. The role of the endoplasmic reticulum in the formation of the polar filament, polaroplast and spore coat, and the function of the spore membrane, are discussed.  相似文献   

14.
ABSTRACT. The light microscopic and ultrastructural characteristics of a microsporidium provisionally identified as Toxoglugea chironomi (Debaiseux, 1931) Jírovec, 1936, is described. It was isolated from oenocytes and adipose tissue of a midge larva of the genus Dicrotendipes . Merozoites are diplokaryotic. The sporogony produces, by fragmentation, eight monokaryotic spores in a sporophorous vesicle. Mature spores are horse-shoe shaped. The total length is about 5.8 μm, the width 0.8-0.9 μm, the external height of the curve 2.3-3.5 μm, and the external width of the curve 3.5-5.2 μm. The polaroplast has lamellar compartments of two types: narrow and closely packed anteriorly, and wider and more loosely arranged posteriorly. The isofilar polar filament is arranged in 8–10 coils in the posterior fourth of the spore. The external nuclear membrane is sometimes continuous with the endoplasmic reticulum. Lamellar and tubular material of exospore construction are present in the episporontal space from the beginning of sporogony. Teratological and normal spores sometimes occur together in the sporophorous vesicle. The identification of the species is discussed and the ultrastructure is compared to Toxoglugea variabilis , the only further species of the genus with known ultrastructural cytology.  相似文献   

15.
Microsporidia of the genus Amblyospora parasiting the adipose body of mosquito larvae of the genus Aedes and Culex has been studied with both light and electron microscopy. Six new species of microsporidia are described based on ultrastructural characteristics of spores and sporogony stages. Amblyospora flavescens sp. n. Mature spores are egg-shaped. The spore wall with three layers, about 165 nm. Exospore is two-membranous. Subexospore is absent. Endospore is electron-translucent. Polaroplast consists of three parts: lamellar, large vesicular, lamellar. The anisofilar polar filament with 10--11 coils (3 1/2 + 2 1/2 + 4-5). Fixed spores are 6.3 +/- 0.1 x 4.24 +/- 0.1 microm. Amblyospora kolarovi sp. n. Mature spores are egg-shaped. The spore wall with three layers, about 265-315 nm. Exospore shapes tucks on the surface of spore. It is two-membranous. Subexospore is quagge, structural. Endospore is electron-translucent. Polaroplast consists of two parts: lamellar and large vesicular. The anisofilar polar filament with 11-13 coils (3 + 8-10). Fixed spores are 5.4-5.6 x 3.5-4.2 microm. Amblyospora orbiculata sp. n. Mature spores are widely egg-shaped. On a back pole there is a small concavity. The spore wall with three layers, about 155 nm. Exospore is shapes tucks on a surface of spore. It is two-membranous. Subexospore is absent. Endospore is electron-translucent. Polaroplast consists of three parts: lamellar, vesicular, lamellar. Polar filament is anisofilar, with 11 1/2 coils (4 1/2 + 1 + 6). Fixed spores are 6.3 +/- 0.1 x x 4.0 +/- 0.1 microm. Amblyospora rugosa sp. n. Mature spores are egg-shaped. On a back pole there is a small concavity. The spore wall with three layers, about 225 nm. Exospore is shapes tucks on a surface of spore. It is two-membranous. Subexospore is quaggy, structural. Endospore is electron-translucent. Polaroplast lamellate. Polar filament is anisofilar, with 17 1/2 coils (3 1/2 + 1 + 13). Fixed spores are 5.3 +/- 0.1 x 3.7 +/- 0.1 microm. Amblyospora undata sp. n. Mature spores are egg-shaped. The spore wall is three-layered, about 220 nm. Exospore is shapes tucks on a surface of spore. It is two-membranous. Subexospore is quaggy, structural. Endospore is electron-translucent. Polaroplast lamellate. The anisofilar polar filament with 8 coils (3 + 5). Fixed spores are 5.0 +/- 0.1 x 3.0 +/- 0.1 microm. Amblyospora urski sp. n. Mature spores have widely oval form. The back pole is concave. The spore wall with three layers, about 280 nm. Exospore is shapes tucks on a surface of spore. It is two-membranous. Subexospore is quaggy, structural. Endospore is electron-translucent. Polaroplast lamellate. Polar filament is anisofilar, with 6 coils (2 + 4). Fixed spores are 4.4 +/- 0.1 x 2.9 +/- 0.1 microm.  相似文献   

16.
ABSTRACT. Pyrotheca hydropsycheae n. sp. is described from caddis fly larvae, Hydropsyche siltalai Döhler, 1963. All stages were found in oenocytes and fat body cells. Meronts were uni- or binucleate with simple surface membranes. The sporogonic stages were recognized ultrastructurally by the separation of an envelope, the sporophorous vesicle, from their surfaces. Mature sporogonial plasmodia were tetranucleate and gave rise by longitudinal fission to four uninucleate elongate sporoblasts with polar nuclei. Spores were lageniform with an inflated posterior end, containing the polar tube coils and the nucleus, and a narrow anterior section comprising two-thirds of the length, containing the polaroplast and straight part of the polar tube. The polaroplast consisted of an anterior region of loosely packed membranes arranged as partitions at angles to one another and a posterior region of increasingly closely packed parallel membranes. The spore wall consisted of an electron-dense exospore with a fuzzy coat and a thin electron-lucent endospore. All four spores derived from a sporont faced in the same direction in the sporophorous vesicle. Spores measured 8.7 μm long and extruded polar filaments were about 20 μm.  相似文献   

17.
SYNOPSIS. In the microsporidian, Thelohania bracteata, the polar filament, as it starts to develop in the sporoblast, apparently receives material synthesized by the granular endoplasmic reticulum and Golgi vesicles. In immature spores many dilated sacs are observed in areas where there is less endoplasmic reticulum. These sacs, that persist into the almost mature spore, are probably Golgi-type vesicles and may be related to the formation of the spore coat. The polar filament of the mature spore possesses 8 coils and in cross section or cross-fractured face the electron-dense central portion of the polar filament contains a tubular structure, ringed by 12–14 cylindrical structures. In thin sections, an electron-lucid zone is observed between the core and membrane of the polar filament. The polar filament runs through the highly laminated polaroplast which occupies the anterior portion of the spore. In cross-fractured face the lamellae of the polaroplast are arranged like the petals of a flower. The basal portion of the polar filament is enlarged, appearing arrow-shaped in thin sections and pear-shaped in frozen-etched preparations. Frozen-etched membranes differ in the size and distribution of the surface particles.  相似文献   

18.
SYNOPSIS. Plistophora cargoi n. sp., found in the muscles of Callinectes sapidus Rathbun, is described. Spores are ellipsoidal and about 3.3 by 5.1 μ when alive. The coiled polar filament is PAS positive. When extruded the filament appears thick throughout most of its length but has a short and fine terminal portion. The sporont gives rise to many (32 to more than 100) spores. P. sp. Sogandares-Bernal, 1962, found in the muscles of the fresh water crayfish Cambarellus puer Hobbs, is given the name P. sogandaresi n. sp.  相似文献   

19.
A new myxosporean species is described from the fish Semaprochilodus insignis captured from the Amazon River, near Manaus. Myxobolus insignis sp. n. was located in the gills of the host forming plasmodia inside the secondary gill lamellae. The spores had a thick wall (1.5-2 microm) all around their body, and the valves were symmetrical and smooth. The spores were a little longer than wide, with rounded extremities, in frontal view, and oval in lateral view. They were 14.5 (14-15) microm long by 11.3 (11-12) microm wide and 7.8 (7-8) microm thick. Some spores showed the presence of a triangular thickening of the internal face of the wall near the posterior end of the polar capsules. This thickening could occur in one of the sides of the spore or in both sides. The polar capsules were large and equal in size surpassing the midlength of the spore. They were oval with the posterior extremity rounded, and converging anteriorly with tapered ends. They were 7.6 (7-8) microm long by 4.2 (3-5) microm wide, and the polar filament formed 6 coils slightly obliquely to the axis of the polar capsule. An intercapsular appendix was present. There was no mucous envelope or distinct iodinophilous vacuole.  相似文献   

20.
SYNOPSIS. Glugea gasti sp. n., a microsporidan pathogen of Anthonomus grandis Boheman (the boll weevil), is described and a probable life cycle presented. The alimentary canal, and probably the mesenteron 1st, is the initial site of infection, altho the disease later becomes generalized thruout most body tissues. Binucleate sporoplasms initiate the 1st schizogonic phase, characterized by mono- and bi-nucleate schizonts. The 2nd schizogonic phase is characterized by mono-, bi- and quadrinucleate schizonts, by prolific multiplication, by the dense compact nuclei early in this phase, and late in this phase by larger schizonts with less dense vesicular nuclei. This phase terminates in formation of diplokarya. The sporogonic phase is characterized by combination of the 2 nuclei in the diplokaryon followed by nuclear divisions in a sequence closely resembling meiosis. Two sporoblasts are produced from each sporont. Mature spores in wet mounts by phase contrast were 4.3 ± 0.3 μ long by 2.3 ± 0.2 μ wide. The polar filament averaged 76 μ long. Mature spores were present about 24 hours after infection. Some observations are presented on an external filament extending from one pole of the spore to host tissue and other events during the process of spore morphogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号