首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Calcium binding to bone gamma-carboxyglutamic acid protein (BGB) from calf has been studied using 43Ca NMR. The temperature dependence of the 43Ca NMR signal has been used to calculate the calcium ion exchange rate, koff. The dependence of the 43Ca NMR band shape on the [Ca2+]/[BGP] ratio fits well to a chemical equilibrium model having a single Ca2+-binding site with an association constant in the range of 5 X 10(3)-1 X 10(5) M-1. The pH dependence of the 43Ca NMR line-width shows a single apparent pKa value of 5.1.  相似文献   

2.
The calcium-binding properties of equine and pigeon lysozyme as well as those of bovine and human alpha-lactalbumin were investigated by 43Ca NMR spectroscopy. All proteins were found to contain one high-affinity calcium-binding site. The chemical shifts, line widths, relaxation times (T1 and T2), and quadrupole coupling constants for the respective 43Ca NMR signals were quite similar; this is indicative of a high degree of homology between the strong calcium-binding sites of these four proteins. The measured chemical shifts (delta approximately -3 to -7 ppm) and quadrupole coupling constants (chi approximately 0.7-0.8 MHz) are quite distinct from those observed for typical EF-hand calcium-binding proteins, suggesting a different geometry for the calcium-binding loops. The correlation times for bound calcium ions in these proteins were on the order of 4-8 ns, indicating that the flexibilities of these binding sites are limited. The apparent pKa values for the high-affinity sites ranged from 3.4 to 4.7, confirming the participation of carboxylate-containing residues in the coordination of the calcium ion. Competition experiments with EDTA showed that the affinities of these proteins for calcium follow the series bovine alpha-lactalbumin approximately human alpha-lactalbumin greater than pigeon lysozyme greater than equine lysozyme (KD approximately 5 x 10(-8) to 10(-6) M). Evidence for the existence of a second weak calcium-binding site (KD = 3 x 10(-3) M) was obtained for bovine alpha-lactalbumin, but not for the other proteins studied.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Cadmium-113 and calcium-43 NMR spectra of Cd2+ and Ca2+ bound to the porcine intestinal calcium binding protein (ICaBP; Mr 9000) contain two resonances. The first resonance is characterized by NMR parameters resembling those found for these cations bound to proteins containing the typical helix-loop-helix calcium binding domains of parvalbumin, calmodulin, and troponin C, which are defined as EF-hands by Kretsinger [Kretsinger, R. H. (1976) Annu. Rev. Biochem. 45, 239]. The second resonance in both spectra has a unique chemical shift and is consequently assigned to the metal ion bound in the N-terminal site of ICaBP. This site is characterized by an insertion of a proline in the loop of the helix-loop-helix domain and will be called the pseudo-EF-hand site. The binding of Cd2+ to the apo form of ICaBP is sequential. The EF-hand site is filled first. Both binding sites have similar, but not identical, affinities for Ca2+: at a Ca2+ to protein ratio of 1:1, 65% of the ion is bound in the EF-hand site and 35% in the pseudo-EF-hand site. The two sites do not appear to act independently; thus, replacement of Ca2+ or Cd2+ by La3+ in the EF-hand site causes changes in the environment of the ions in the pseudo-EF-hand site. In addition, the chemical shift of Cd2+ bound to the EF-hand site is dependent on the presence or absence of Ca2+ or Cd2+ in the pseudo-EF-hand site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The phospholipase A2 from the venom of A. halys blomhoffii was titrated with micellar n-hexadecylphosphorylcholine (an analog of lysolecithin) by following the tryptophyl fluorescence change at 25 degrees C and ionic strength 0.1. The data were analyzed by assuming that the micellar surface has multiple binding sites for the enzyme and that these sites are identical and mutually independent. The enzyme binding site was found to accommodate a constant number of the substrate (monomer) molecules, N = 10.0 and 6.7 for the apoenzyme and its Ca2+ complex, respectively. The binding constant of the enzyme to the substrate micelle was found to be enhanced by Ca2+ binding to the enzyme. The pH dependence of the binding constant of the apoenzyme to the micelle was well interpreted in terms of pK shifts of two ionizable groups from 5.16 to 5.67 and from 6.45 to 6.6. The pH-dependence curve for the enzyme-Ca2+ complex, which lacked the former transition, was interpreted in terms of the pK shift of a single ionizable group from 5.55 to 5.76. The former ionizable group was assigned as Asp 49, to which Ca2+ ion can coordinate, and the latter as His 48 in the active site. No participation of the alpha-amino group with a pK value of 7.30 was observed. The binding constant of the enzyme to the substrate micelle, Kmic = 0.45-2.3 X 10(6) M-1, was found to be far greater than that to the monomeric substrate, Kmon = 0.2-1.0 X 10(4) M-1. This was interpreted in terms of the presence of an additional weak substrate-binding site in the enzyme molecule.  相似文献   

5.
Dimeric T. flavoviridis phospholipase A2 has been studied in terms of the interaction with essential Ca2+ by equilibrium gel filtration, ultraviolet difference spectroscopy, fluorescence measurements, and chemical modifications with p-bromophenacyl bromide. The subunit bound to Ca2+ with a 1:1 molar ratio and no cooperative binding was observed. The hypochromic effect produced upon the binding of Ca2+ is due to perturbation of (a) specific tryptophan residue(s) located in the vicinity of the active site and appears to be characteristic of this enzyme. On the basis of the pH dependence of the dissociation constants, it has been found that the alpha-amino group (pKa 8.7) controls the binding of Ca2+. Deprotonation of the alpha-amino group is possibly accompanied by conformational transition to the active form which is able to bind Ca2+. This is in contrast to the case of bovine pancreatic phospholipase A2 in which Asp-49 (pKa 5.2) is responsible for the metal ion binding (Fleer et al. (1981) Eur. J. Biochem. 113, 283-288). Des-octapeptide(1-8)-phospholipase A2 (L-fragment) was found to be capable of binding Ca2+ under the control of a group with a pKa of 7.6. This pKa value was similar to an apparent pKa of 7.5 determined for the histidine residue in the active site of the native enzyme by way of p-bromophenacyl bromide modification. It appears that the N-terminal (octapeptide) sequence affects the binding mode of Ca2+, possibly because of conformational transition arising from its removal. The reinvestigation showed that the N-terminal octapeptide sequence is Gly-Leu-Trp-Gln-Phe-Glu-Asn-Met.  相似文献   

6.
The kinetics of calcium dissociation from two groups of site-specific mutants of calbindin D9k--a protein in the calmodulin superfamily with two Ca2+ sites and a tertiary structure closely similar to that of the globular domains of troponin C and calmodulin--have been studied by stopped-flow kinetic methods, using the fluorescent calcium chelator Quin 2, and by 43Ca NMR methods. The first group of mutants comprises all possible single, double, and triple neutralizations of three particular carboxylate groups (Glu-17, Asp-19, and Glu-26) that are located on the surface of the protein. These carboxylates are close to the two EF-hand calcium binding sites, but are not directly liganded to the Ca2+ ions. Conservative modification of these negative carboxylate side chains by conversion to the corresponding amides results in a marked reduction in the Ca2+ binding constants for both sites, as recently reported [Linse et al. (1988) Nature 335, 651-652]. The stopped-flow kinetic results show that this reduction in Ca2+ affinity derives primarily from a reduction in the Ca2+ association rate constant, kon. The estimated maximum value of the association rate constant (kon(max) for Ca2+ binding to the wild-type protein is ca. 10(9) M-1 s-1. In contrast, for the mutant protein with three charges neutralized the maximum association rate constant is estimated to be only 2 X 10(7) M-1 s-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
S S Reid  J A Cowan 《Biochemistry》1990,29(25):6025-6032
The thermodynamics and kinetics of magnesium binding to tRNA(Phe)(yeast) have been studied directly by 25Mg NMR. In 0.17 M Na+(aq), tRNA(Phe) exists in its native conformation and the number of strong binding sites (Ka greater than or equal to 10(4)) was estimated to be 3-4 by titration experiments, in agreement with X-ray structural data for crystalline tRNA(Phe) (Jack et al., 1977). The set of weakly bound ions were in slow exchange and 25Mg NMR resonances were in the near-extreme-narrowing limit. The line shapes of the exchange-broadened magnesium resonance were indistinguishable from Lorentzian form. The number of weak magnesium binding sites was determined to be 50 +/- 8 in the native conformation and a total line-shape analysis of the exchange-broadened 25 Mg2+ NMR resonance gave an association constant Ka of (2.2 +/- 0.2) X 10(2) M-1, a quadrupolar coupling constant (chi B) of 0.84 MHz, an activation free energy (delta G*) of 12.8 +/- 0.2 kcal mol-1, and an off-rate (koff) of (2.5 +/- 0.4) X 10(3) s-1. In the absence of background Na+(aq), up to 12 +/- 2 magnesium ions bind cooperatively, and 73 +/- 10 additional weak binding sites were determined. The binding parameters in the nonnative conformation were Ka = (2.5 +/- 0.2) X 10(2) M-1, chi B = 0.64 MHz, delta G* = 13.1 +/- 0.2 kcal mol-1, and koff = (1.6 +/- 0.4) X 10(3) s-1. In comparison to Mg2+ binding to proteins (chi B typically ca. 1.1-1.6 MHz) the lower chi B values suggest a higher degree of symmetry for the ligand environment of Mg2+ bound to tRNA. A small number of specific weakly bound Mg2+ appear to be important for the change from a nonnative to a native conformation. Implications for interactions with the ribosome are discussed.  相似文献   

8.
Calcium titration of the conformational change in cardiac and skeletal troponin C (TN-C) was followed by circular dichroism (CD) at pH values in the range from 5.2 to 7.4. Computer analysis was used to resolve the contributions from the different classes of Ca2+ -binding sites. At pH 6.94 in skeletal TN-C, apparent affinity constants for calcium of 1.8 x 10(7) and 4.5 x 10(5) M-1 were determined for the two classes of binding sites. The more sophisticated computer analysis of the data has revealed a substantial CD contribution from the low-affinity sites (approximately 30% of the high affinity contribution at pH 6.94) and suggests that skeletal TN-C with Ca2+ bound at the low-affinity sites is in a different conformation from that when just the high-affinity sites are occupied, in agreement with a recent nuclear magnetic resonance (NMR) study on this system (Seaman, K. B., Hartshorne, D. J. & Bothener-By, A. A. (1977) Biochemistry 16,4039-4046). With the cardiac protein at pH 7.07, an apparent affinity constant for calcium of 2.0 x 10(7) M-1 was calculated while no low-affinity site at this pH was detected by CD. On the other hand, at lower pH values, such as 6.05, a CD contribution from the cardiac low-affinity Ca2+ -binding site is detected with an apparent binding constant of 3.7 +/- 0.7 x 10(4) M-1. At the lower pH values, protonation of a class of carboxyl groups in each protein which possesses a high pKa (6.2-6.3) elicits the conformational change at the high-affinity sites with a corresponding decrease in the overall magnitude of the Ca2+ -evoked changes. The expression of a conformational change upon Ca2+ binding at the level of the low-affinity sites is enchanced by protonation of a class of carboxyls with a pKa of 6.3 in cardiac TN-C and 6.7-6.8 with the skeletal homologue. In both cases, this contribution is reduced upon protonation of carboxyls with pKa less than or equal to 5.5. It was also observed that the low-affinity sites of skeletal TN-C have a much larger role to play in the total conformational change than the low-affinity sites of cardiac TN-C, a finding probably related to the inability of site 1 in the cardiac protein to bind calcium. In the cardiac protein, the Ca2+ -induced tyrosine difference-spectrum maximum is reduced from deltaepsilonM,287nm =330M-1.cm-1 to 20M-1.cm-1 by protonation of a class of groups with a pKa of 6.4, presumably the same carboxyl groups as those invoved in the CD conformational contribution from the high-affinity binding sites. No such effect was observed for the skeletal protein where deltaepsilonM,287nm was constant at 110M-1 .cm-1 over the pH range studied. The dramatic alterations in the tyrosine environment of cardiac TN-C with pH are attributed to either or both of the tyrosines located in the two high-affinity Ca2+ -binding sites (sites 3 and 4)...  相似文献   

9.
The two Ca(2+)-binding sites in calbindin D9k, a protein belonging to the calmodulin superfamily of intracellular proteins, have slightly different structure. The C-terminal site (amino acids 54-65) is a normal EF-hand as in the other proteins of the calmodulin superfamily, while the N-terminal site (amino acids 14-27) contains two additional amino acids, one of which is a proline. We have constructed and studied five mutants of calbindin D9k modified in the N-terminal site. In normal EF-hand structures the first amino acid to coordinate calcium is invariantly an Asp. For this reason Ala15, is exchanged by an Asp in all mutants and the mutants also contain various other changes in this site. The mutants have been characterized by 43Ca, 113Cd and 1H NMR and by the determination of the calcium binding constants using absorption chelators. In two of the mutants (one where Ala14 is deleted, Ala15 is replaced by Asp and Pro20 is replaced by Gly, the other where, in addition, Asn21 is deleted), we find that the structure has changed considerably compared to the wild-type calbindin. The NMR results indicate that the calcium coordination has changed to mainly side-chain carboxyls, from being octahedrally coordinated by mainly back-bone carbonyls, and/or that the coordination number has decreased. The N-terminal site has thus been turned into a normal EF-hand, in which the calcium ion is coordinated by side-chain carboxyls. Furthermore, the calcium binding constants of these two mutant proteins are almost as high as in the wild-type calbindin D9k. That is, the extensive alterations in the N-terminal site have not disrupted the calcium binding ability of the proteins.  相似文献   

10.
To improve our understanding of the physiological roles of parvalbumins, PA-1 (pI 4.78) and PA-2 (pI 4.97) parvalbumins were prepared from bullfrog skeletal muscle and their calcium binding properties were examined in a medium of constant ionic strength (I = 0.106, pH 6.80, at 20 degrees C) containing various concentrations of Mg2+ by using a metallo-indicator, tetramethylmurexide. Apparent binding constants for Ca2+ in the presence of Mg2+ changed in the manner expected if Ca2+ and Mg2+ compete for two independent homogeneous binding sites. The following values were obtained: for PA-1, KCa = 1 X 10(7) M-1, KMg = 900 M-1; for PA-2, KCa = 6 X 10(6) M-1, KMg = 830 M-1 (I = 0.106, pH 6.80, at 20 degrees C). The apparent binding constants are strongly dependent on temperature: at 10 degrees C for PA-1, KCa = 2 X 10(8) M-1, KMg = 10(4) M-1; for PA-2, KCa = 5 X 10(7) M-1, KMg = 5 X 10(3) M-1 (I = 0.106, pH 6.80). The dependence of the affinities for Ca2+ on ionic strength is similar to or less than that of GEDTA (EGTA). The affinities for Ca2+ and Mg2+ of parvalbumins are unchanged between pH 6.5 and 7.2.  相似文献   

11.
Calcium vector protein (CaVP) from amphioxus is a two-domain, calcium-binding protein (18.3 kDa) of the calmodulin superfamily. Only two of the four EF-hand motifs (sites III and IV) have a significant binding affinity for calcium ions. We determined the solution structure of the domain containing these active sites (C-CaVP: W81-S161), in the Ca(2+)-saturated state, using NMR spectroscopy and restrained molecular dynamics. The tertiary structure is similar to other Ca(2+)-binding domains containing a pair of EF-hand motifs. The apo state has spectroscopic and thermodynamic characteristics of a molten globule, with conserved secondary structure but highly fluctuating tertiary organization. Titration of C-CaVP with Ca(2+) revealed a stepwise ion binding, with a stable equilibrium intermediate in which only site III binds a calcium ion. Despite a highly fluctuating structure of the free site IV, the calcium-bound site III has a persistent structure, with similar secondary elements but different interhelix angle and hydrophobic packing relative to the fully calcium-saturated state.  相似文献   

12.
Coagulation factor X is a vitamin K-dependent protein composed of discrete domains or modules. A proteolytically modified derivative of factor X that lacks the NH2-terminal gamma-carboxyglutamic acid (Gla)-containing region retains one Ca2+ binding site. To localize this Gla-independent Ca2+ binding site and to facilitate future studies aimed at elucidating structure-function relationship in the factor X molecule, we have devised a method to isolate the first beta-hydroxyaspartic acid (Hya)-containing epidermal growth factor (EGF)-like domain from proteolytic digests of bovine factor X performed under strictly controlled conditions. The EGF-like domain, corresponding to residues 45-86 in bovine factor X, was obtained in more than 50% recovery, and was at least 98% homogeneous as judged by NH2-terminal sequence analysis. Ca2+ binding to the isolated EGF-like domain was studied by 1H NMR spectroscopy. On binding of Ca2+ to the domain the resonances from Tyr-68 centered at 6.8 ppm were affected. The Ca2+ concentration dependence of the chemical shift was used to calculate the Ca2+ binding constant, resulting in a K alpha of 4 X 10(3) M-1 at pH 8.5 and 1 X 10(3) M-1 at pH 7.4, the higher value presumably reflecting an increase in negative surface charge due to deprotonation of a histidine residue with a pK alpha of 7.4. The NMR spectra gave no evidence of a conformational change in the EGF-like domain between pH 6 and 8.5.  相似文献   

13.
Human brain S100b (beta beta) protein was purified using zinc-dependent affinity chromatography on phenyl-Sepharose. The calcium- and zinc-binding properties of the protein were studied by flow dialysis technique and the protein conformation both in the metal-free form and in the presence of Ca2+ or Zn2+ was investigated with ultraviolet spectroscopy, sulfhydryl reactivity and interaction with a hydrophobic fluorescence probe 6-(p-toluidino)naphthalene-2-sulfonic acid (TNS). Flow dialysis measurements of Ca2+ binding to human brain S100b (beta beta) protein revealed six Ca2+-binding sites which we assumed to represent three for each beta monomer, characterized by the macroscopic association constants K1 = 0.44 X 10(5) M-1; K2 = 0.1 X 10(5) M-1 and K3 = 0.08 X 10(5) M-1. In the presence of 120 mM KCl, the affinity of the protein for calcium is drastically reduced. Zinc-binding studies on human S100b protein showed that the protein bound two zinc ions per beta monomer, with macroscopic constants K1 = 4.47 X 10(7) M-1 and K2 = 0.1 X 10(7) M-1. Most of the Zn2+-induced conformational changes occurred after the binding of two zinc ions per mole of S100b protein. These results differ significantly from those for bovine protein and cast doubt on the conservation of the S100 structure during evolution. When calcium binding was studied in the presence of zinc, we noted an increase in the affinity of the protein for calcium, K1 = 4.4 X 10(5) M-1; K2 = 0.57 X 10(5) M-1; K3 = 0.023 X 10(5) M-1. These results indicated that the Ca2+- and Zn2+-binding sites on S100b protein are different and suggest that Zn2+ may regulate Ca2+ binding by increasing the affinity of the protein for calcium.  相似文献   

14.
We measured by batch microcalorimetry the standard enthalpy change delta H degrees of the binding of Mn2+ to apo-bovine alpha-lactalbumin; delta H degrees = -90 +/- k J.mol-1. The binding constants, KMn2+, calculated from the calorimetric and circular dichroism titration curves, are (4.6 +/- 1).10(5) M-1 and (2.1 +/- 0.4).10(5) M-1, respectively. Batch calorimetry confirms the competitive binding Ca2+, Mn2+ and Na+ to the same site. The relatively small enthalpy change for Mn2+ binding compared to Ca2+ binding favours a model of a rigid and almost ideal Ca2+-complexating site, different from the well-known EF-hand structures. Cation binding to the high-affinity site most probably triggers the movement of an alpha-helix which is directly connected to the complexating loop.  相似文献   

15.
A Ca2+-sensitive electrode was used for determination of the binding strength of Ca2+ to bovine alpha-lactalbumin in 60 mM Tris buffer (pH 7.8-8.5) in the presence of various concentrations of NaCl. The dependence of the apparent binding constant on the concentration of NaCl was consistent with competitive binding of Ca2+ and Na+, and the binding constants of Ca2+ and Na+ were found to be 2.2 (+/- 0.5) X 10(7) M-1 and 99 (+/- 33) M-1, respectively, at 37 degrees C and pH 8.0. The temperature dependence of the binding constant of Ca2+ was examined between 30 and 45 degrees C; extrapolation of the dependence led to a binding constant of approximately 1 X 10(8) M-1 at pH 8.4 and 25 degrees C. The electrostatic contribution and conformational effect of the protein were also taken into consideration, and the intrinsic binding constant of Ca2+ to native alpha-lactalbumin was calculated to be (1.2-1.5) X 10(10) M-1 at 37 degrees C and pH 8.0.  相似文献   

16.
The EF-hand calcium-binding protein from Saccharopolyspora erythraea has been shown, using 113Cd NMR, to possess three Cd(2+)-ion binding sites. This indicates that of the four EF-hand motifs in the molecule, one (probably site 2) is unable to bind Cd(2+)-ions. Data from the titration of the protein with Ca2+, in the presence of Quin2, were fitted to a curve calculated on the assumption that the protein contains three high affinity Ca2+ binding sites, two of which (pK1 = 8.0, pK2 = 9.0) are strongly cooperative, and one single site (pK3 = 7.5). Preliminary 1H NMR experiments indicate marked structural changes upon Ca(2+)-binding.  相似文献   

17.
Co(II) derivatives of Cu,Zn-superoxide dismutase having cobalt substituted for the copper (Co,Zn-superoxide dismutase and Co,Co-superoxide dismutase) were studied by optical and EPR spectroscopy. EPR and electronic absorption spectra of Co,Zn-superoxide dismutase are sensitive to solvent perturbation, and in particular to the presence of phosphate. This behaviour suggests that cobalt in Co,Zn-superoxide dismutase is open to solvent access, at variance with the Co(II) of the Cu,Co-superoxide dismutase, which is substituted for the Zn. Phosphate binding as monitored by optical titration is dependent on pH with an apparent pKa = 8.2. The absorption spectrum of Co,Zn-superoxide dismutase in water has three weak bands in the visible region (epsilon = 75 M-1 X cm-1 at 456 nm; epsilon = 90 M-1 X cm-1 at 520 nm; epsilon = 70 M-1 X cm-1 at 600 nm) and three bands in the near infrared region, at 790 nm (epsilon = 18 M-1 X cm-1), 916 nm (epsilon = 27 M-1 X cm-1) and 1045 nm (epsilon = 25 M-1 X cm-1). This spectrum is indicative of five-coordinate geometry. In the presence of phosphate, three bands are still present in the visible region but they have higher intensity (epsilon = 225 M-1 X cm-1 at 544 nm; epsilon = 315 M-1 X cm-1 at 575 nm; epsilon = 330 M-1 X cm-1 at 603 nm), whilst the lowest wavelength band in the near infrared region is at much lower energy, 1060 nm (epsilon = 44 M-1 X cm-1). The latter property suggests a tetrahedral coordination around the Co(II) centre. Addition of 1 equivalent of CN- gives rise to a stable Co(II) low-spin intermediate, which is characterized by an EPR spectrum with a highly rhombic line shape. Formation of this CN- complex was found to require more cyanide equivalents in the case of the phosphate adduct, suggesting that binding of phosphate may inhibit binding of other anions. Titration of the Co,Co-derivative with CN- provided evidence for magnetic interaction between the two metal centres. These results substantiate the contention that Co(II) can replace the copper of Cu,Zn-superoxide dismutase in a way that reproduces the properties of the native copper-binding site.  相似文献   

18.
Structural independence of the two EF-hand domains of caltractin   总被引:1,自引:0,他引:1  
Caltractin (centrin) is a member of the calmodulin subfamily of EF-hand Ca2+-binding proteins that is an essential component of microtubule-organizing centers in many organisms ranging from yeast and algae to humans. The protein contains two homologous EF-hand Ca2+-binding domains linked by a flexible tether; each domain is capable of binding two Ca2+ ions. In an effort to search for domain-specific functional properties of caltractin, the two isolated domains were subcloned and expressed in Escherichia coli. Ca2+ binding affinities and the Ca2+ dependence of biophysical properties of the isolated domains were monitored by UV, CD, and NMR spectroscopy. Comparisons to the corresponding results for the intact protein showed that the two domains function independently of each other in these assays. Titration of a peptide fragment from the yeast Kar1p protein to the isolated domains and intact caltractin shows that the two domains interact in a Ca2+-dependent manner, with the C-terminal domain binding much more strongly than the N-terminal domain. Measurements of the macroscopic Ca2+ binding constants show that only the N-terminal domain has sufficient apparent Ca2+ affinity in vitro (1-10 microm) to be classified as a traditional calcium sensor in signal transduction pathways. However, investigation of the microscopic Ca2+ binding events in the C-terminal domain by NMR spectroscopy revealed that the observed macroscopic binding constant likely results from binding to two sites with very different affinities, one in the micromolar range and the other in the millimolar range. Thus, the C-terminal domain appears to also be capable of sensing Ca2+ signals but is activated by the binding of a single ion.  相似文献   

19.
In order to obtain information with regard to behavior of the Ca2+ receptor, troponin C (TnC), in intact myofilament lattice of cardiac muscle, we investigated Ca2+-binding properties of canine ventricular muscle fibers skinned with Triton X-100. Analysis of equilibrium Ca2+-binding data of the skinned fibers in ATP-free solutions suggested that there were two distinct classes of binding sites which were saturated over the physiological range of negative logarithm of free calcium concentration (pCa): class I (KCa = 7.4 X 10(7) M-1, KMg = 0.9 X 10(3) M-1) and class II (KCa = 1.2 X 10(6) M-1, KMg = 1.1 X 10(2) M-1). The class I and II were considered equivalent, respectively, to the Ca2+-Mg2+ and Ca2+-specific sites of TnC. The assignments were supported by TnC content of the skinned fibers determined by electrophoresis and 45Ca autoradiograph of electroblotted fiber proteins. Dissociation of rigor complexes by ATP caused a downward shift of the binding curve between pCa 7 and 5, an effect which could be largely accounted for by lowering of KCa of the class II sites. When Ca2+ binding and isometric force were measured simultaneously, it was found that the threshold pCa for activation corresponds to the range of pCa where class II sites started to bind Ca2+ significantly. We concluded that the low affinity site of cardiac TnC plays a key role in Ca2+ regulation of contraction under physiological conditions, just as it does in the regulation of actomyosin ATPase. Study of kinetics of 45Ca washout from skinned fibers and myofibrils revealed that cardiac TnC in myofibrils contains Ca2+-binding sites whose off-rate constant for Ca2+ is significantly lower than the Ca2+ off-rate constant hitherto documented for the divalent ion-binding sites of either cardiac/slow muscle TnC or fast skeletal TnC.  相似文献   

20.
T A Gerken 《Biochemistry》1984,23(20):4688-4697
13C NMR spectroscopy has been used to study the amino group environments and metal binding properties of 13C reductively methylated bovine alpha-lactalbumin. Bovine alpha-lactalbumin is a Ca2+ metalloprotein containing 12 lysyl amino groups and a free amino terminus. All 13 amino groups can be 13C-dimethylated without altering Ca2+ binding or biological activity. pH titrations (chemical shift vs. pH) of this dimethylated protein reveal unique behavior for each of the 13 amino groups. The pKa values for the lysyl amino groups range from 9.1 to 10.8 while the pKa for the N-terminal amino group is 8.3. This relatively high pKa (by 1 pH unit) for the N-terminal supports its interaction in an ion pair as proposed by Warme et al. [Warme, P. K., Momany, F. A., Rumball, S. V., Tuttle, R. W., & Scheraga, H. A. (1974) Biochemistry 13, 768-782]. Carbon-13 NMR studies further show that the removal of Ca2+ from the high-affinity binding site results in a conformational change, with the disruption of the N-terminal ion pair interaction (pKa decreased to 7.4). The study of Zn2+ binding to Ca2+-saturated protein suggests that Zn2+ binds initially at a low-affinity Ca2+ site while maintaining the N-terminal ion pair interaction. The further addition of Zn2+ leads to the disruption of this ion pair forming a presumed apoprotein-like conformation. Finally on the basis of the specific effects of added Mn2+ on the 13C NMR spectra of the methylated protein, a low-affinity divalent metal binding site is proposed about 7.5 A from the amino terminus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号