首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Malkit Sami  Christopher Dempsey   《FEBS letters》1988,240(1-2):211-215
The hydrophobic transbilayer peptide of erythrocyte glycophorin has been purified following exchange of tritium into the backbone amides, and reconstituted in egg phosphatidylcholine micelles. Analysis of tritium exchange from the backbone amides of the membrane-reconstituted peptide shows that about two of the amides are virtually non-exchangeable, about 10 are slowed by factors of 10(7) relative to free amides in unstructured water soluble peptides and the remainder of the amides (about 20) have slowing factors of less than 1000. These classes of amides are proposed to reflect the stability of the peptide with respect to hydrogen bond breaking fluctuations and the accessibility of the amides to exchange catalysts in different regions of the bilayer.  相似文献   

2.
Monoterpene citral and citronellal have been used as starting material for the preparation of 5,9-dimethyl-deca-2,4,8-trienoic acid amides and 9-formyl-5-methyl-deca-2,4,8-trienoic acid amides. The amides on bioevaluation as efflux pump inhibitors (EPIs) against Staphylococcus aureus 1199 and NorA overexpressing S. aureus 1199B bacteria resulted in the identification of several of these as potent EPIs. Many of these amides have been shown to possess potency higher or equivalent to known EPIs such as reserpine, verapamil, carsonic acid, and piperine. In this communication, we report a convenient synthesis of alkenyl amides, their bioevaluation and identification as efflux pump inhibitors against S. aureus.  相似文献   

3.
A family of five long-chain fatty acid carboxamides has been identified and semi-quantified in human plasma by GC-MS. One saturated and four unsaturated amides were found. Luteal phase plasma from 16 women was studied, and all five of the amides were found in ten of the subjects, but none in the other six. The structure of these endogenous amides was established by comparing their GC and MS characteristics with those of the synthetic amides prepared by ammonolysis of corresponding long-chain fatty acid acyl chlorides.  相似文献   

4.
A homologous series of N-(3-methylbutyl)amides of normal saturated C14, C15, C16, C17 and C18 fatty acids were identified as major components of glandular trichome extracts from Medicago sativa G98A, an alfalfa genotype resistant to the potato leafhopper, Empoasca fabae. A second homologous series of N-(2-methylpropyl)amides of C14 through C18 normal fatty acids were minor components. Saturated free fatty acids C12, C13, C14, C15, C16, C17 and C18 were present in trace amounts, as was the N-(3-methylbutyl)amide of linoleic acid (C18:2). N-(3-methylbutyl)amides and N-(2-methylpropyl)amides of C14 through C18 fatty acids, along with the N-(3-methylbutyl)amide of linoleic acid, were synthesized and bioassayed for leafhopper deterrence by applying the compounds to the surface of a sachet containing an artificial diet. Leafhoppers were then offered a two-way choice between diet surfaces treated with the synthetic amides or an untreated control. N-(3-methylbutyl)amides and N-(2-methylpropyl)amides of C14 through C18 fatty acids did not deter leafhopper settling in a dose-dependent fashion. In contrast, when tested singly, N-(3-methylbutyl)amide of linoleic acid exhibited dose-dependent deterrence against leafhopper settling. Fatty acid amides localized in alfalfa glandular trichomes likely contribute to leafhopper resistance.  相似文献   

5.
Hydroxycinnamic acid (HCA) amides in fertile and cytoplasmic male sterile lines of maize were determined in reproductive organs, developing grains and cobs. HCA amides occurred in large amounts in the anthers of fertile plants (line F7N) and were absent from the anthers of cytoplasmic male sterile lines (lines F7T and F7C). Restoration of fertility was associated with the production of these compounds (line FC31). Considerable variations were observed in the concentrations of HCA amides at different stages of growth and grain maturation. Changes of HCA amides in the grains which were to produce sterile plants followed a pattern similar to that obtained with the grains which were to produce fertile plants. Accumulation of HCA amides was substantially higher in fertile lines whatever their genotype (F7N, FC31 and F7T x FC31) than in sterile lines. Marked changes occurred in the HCA amide content of embryo and endosperm during grain development. Many changes in HCA amides were observed in cobs during development and maturation, but no substantial differences could be observed between fertile and sterile lines.  相似文献   

6.
Monocyclic enediynyl amides 2a-2c have been synthesized via the corresponding free amine 5. Kinetic studies in chloroform revealed the reactivity of these amides towards Bergman cyclization to be less than that of the corresponding sulfonamides. However, differential scanning calorimetry (DSC) measurements in the solid state and DNA-cleavage studies in aqueous buffer showed higher reactivity for the amides than the sulphonamides.  相似文献   

7.
In alpha-chymotrypsin-catalyzed acyl-transfer reactions in water the specificity of the enzyme (the nucleophile reactivity of amino acid amides) is correlated with the substrate hydrophobicity and increases as the hydrophobicity of the side chain of the amino acid amides is increased. In a low water system (4% H2O) bulky amino acid amides are less efficient nucleophiles. The specificity of alpha-chymotrypsin towards the amino acid amides in acyl transfer reactions in this case does not depend on the hydrophobicity of the amino acid side chains but correlates with their size. Therefore, different factors can be responsible for the specificity of enzymes in water and in a mainly organic medium.  相似文献   

8.
Quinoline amide, azaindole amide and pyridine amides were synthesized and tested for in vitro antifungal activity against fungi. These synthesized amides have potent antifungal activity against Candida albicans and Aspergillus fumigatus. Our results suggest that hetero ring amides may be potent antifungal agents that operate by inhibiting the function of Gwt1 protein in the GPI biosynthetic pathway.  相似文献   

9.
We discuss in this article the origin and magnitude of the single bond rotational barrier in amides and esters. The high rotational barrier of amides is biochemically manifested in the limited conformational freedom of proteins, Since there are only two instead of three bonds to rotate about per arnino acid residue. On the basis of thermochemical estimates with model compounds, we find that the resonance energy of esters is somewhat higher than that of amides. However, the experimental rotational barrier for the former is considerably lower than the latter. We suggest esters have lower rotational barriers than the corresponding amides because they retain a large fraction of the resonance energy in the transition state. Justification is offerred using an orbital delocalization argument.  相似文献   

10.
Two kinds of hydroxycinnamic derivatives can be found in tobacco: esters and amides. They do not accumulate in the same way during development. Esters, especially chlorogenic acids, are always present in all organs, whereas amides are observed only during certain periods in specific organs (from 47 days after sowing, in apical leaves, anthers and ovaries). A relationship has been found between accumulation of amides and flowering of plants grown at 20°C. By comparing amide accumulation as well as leaf emergence rate, both at a temperature that allows flowering (20°C) and at a temperature that inhibits flowering (30°C), it appears that amides begin to accumulate whenever a plant is ripening to flower.  相似文献   

11.
Summary Forty yeast strains were screened for nitrile-hydrolysing activity. Among them Kluyveromyces thermotolerans MGBY 37 exhibited highest nitrile-hydrolysing activity (0.030 μmol/h/mg dry cell weight). This yeast contained a two-enzyme system i.e. nitrile hydratase (NHase, EC 4.2.1.84) and amidase (EC 3.5.1.4) for the hydrolysis of nitriles/amides to corresponding acids and ammonia. However, these enzymes had more affinity for N-heterocyclic aromatic and aromatic nitriles/amides rather than unsaturated and saturated aliphatic nitriles/amides. The NHase–amidase activity was constitutively produced by K. thermotolerence MGBY 37. Addition of acetonitrile in the medium enhanced the production of this activity while other nitriles and amides lowered the production of NHase–amidase activity. This organism thus exhibited two types of amidase i.e. a constitutive amidase having affinity for N-heterocyclic aromatic, unsaturated and saturated aliphatic amides and another inducible amidase with affinity for aromatic amides. Formamide proved to be the best inducer of the latter amidase activity. This is the first report on nitrile- and amide-hydrolysing activity in Kluyveromyces.  相似文献   

12.
Structure-activity relationships for the inhibition of thrombin and trypsin by N alpha-substituted amidinophenyl-alpha-aminoalkylcarboxylic acid amides are presented. Secondary cyclic amides of N alpha-substituted 4-amidinophenylalanine and 2-amino-5-(4-amidinophenyl)valeric acid were found to be potent and specific inhibitors of thrombin, whereas trypsin was inhibited strongly by primary amides of 2-amino-4-(4-amidinophenyl) butyric acid. For this type of inhibitor the carbon amide structure seems to play a decisive role in the enzyme-inhibitor interaction.  相似文献   

13.
A new aminoethyl-polystyrene linker, stable at low concentrations of TFA, has been developed for the solid phase synthesis of peptide amides. The described linker is stable under conditions which remove Bu(t) protecting groups (30-50% TFA in DCM) and the desired product can be finally cleaved off the solid support in 95% TFA (5% H2O). Model peptide amides and other N-alkylated peptide amides have been successfully synthesized in good yield and purity.  相似文献   

14.
《Chirality》2017,29(10):616-622
An environment‐friendly, free of solvent, process for the synthesis of (R )‐ and (S )‐ricinoleic acid amides has been developed. Starting from methyl ricinoleates and pyrrolidine or ethanolamine, the corresponding amides were obtained with yields ranging from 83–88%. Among 12 synthesized derivatives of ricinoleic acid, including the starting methyl esters, amides, and their acetates, nine compounds were obtained and tested for the first time. Studies on ricinoleic acid derivatives cytotoxicity showed that methyl esters were the least cytotoxic compounds and modification of their structure resulted in increasing cytotoxicity of the obtained products against both cancer cells and normal lymphocytes. Both enantiomers of the ethanolamine‐derived amides showed the most promising anticancer potential.  相似文献   

15.
Xenorhabdus doucetiae, the bacterial symbiont of the entomopathogenic nematode Steinernema diaprepesi produces several different fatty acid amides. Their biosynthesis has been studied using a combination of analysis of gene deletions and promoter exchanges in X. doucetiae and heterologous expression of candidate genes in E. coli. While a decarboxylase is required for the formation of all observed phenylethylamides and tryptamides, the acyltransferase XrdE encoded in the xenorhabdin biosynthesis gene cluster is responsible for the formation of short chain acyl amides. Additionally, new, long‐chain and cytotoxic acyl amides were identified in X. doucetiae infected insects and when X. doucetiae was grown in Galleria Instant Broth (GIB). When the bioactivity of selected amides was tested, a quorum sensing modulating activity was observed for the short chain acyl amides against the two different quorum sensing systems from Chromobacterium and Janthinobacterium.  相似文献   

16.
Derivatives of the available plant triterpenes glycyrrhetic acid and betulin (betulin succinates and amides of betulonic and 18beta-glycyrrhetic acids containing fragments of long-chain amino acids and a peptide) were synthesized. The inhibitory action of these compounds on the growth of MT-4, MOLT-4, CEM. and Hep G2 tumor cells and their effect on the apoptosis of these cells were studied. It was shown that betulonic acid amides are more effective inhibitors of the tumor cell growth than the corresponding amides of glycyrrhetic acid. It was also found that betulonic acid amides containing fragments of caprylic, pelargonic, and undecanoic acids are more effective inhibitors of tumor cell growth than betulinic acid. The 17-dipeptide derivative of betulonic acid N-{N-[3-oxo-20(29)-lupen-28-oyl]-9-aminononanoyl}-3-amino-3-phenylpropionic acid exhibited the maximum inhibitory activity toward the tumor cells studied. Data on the induction of apoptosis in tumor cells by betulin derivatives at a concentration of 10 microg/ml were obtained by flow cytometry. The amides of betulonic acid proved to be the most effective inducers of apoptosis.  相似文献   

17.
Amide-resolved hydrogen-deuterium exchange-rate constants were measured for backbone amides of alamethicin reconstituted in dioleoylphosphatidylcholine vesicles by an exchange-trapping method combined with high-resolution nuclear magnetic resonance spectroscopy. In vesicles containing alamethicin at molar ratios between 1:20 and 1:100 relative to lipid, the exchange-rate constants increased with increasing volume of the D20 buffer in which the vesicles were suspended, indicating that exchange under these conditions is dominated by partitioning of the peptide into the aqueous phase. This was supported by observation of a linear relationship between the exchange-rate constants for amides in membrane-reconstituted alamethicin and those for amides in alamethicin dissolved directly into D2O buffer. Significant protection of amides from exchange with D2O buffer in membrane-reconstituted alamethicin is interpreted in terms of stabilization by helical hydrogen bonding. Under conditions in which amide exchange occurred by partitioning of the peptide into solution, only lower limits for hydrogen-bond stabilities in the membrane were determined; all the potentially hydrogen-bonded amides of alamethicin are at least 1000-fold exchange protected in the membrane-bound state. When partitioning of alamethicin into the aqueous phase was suppressed by hydration of reconstituted vesicles in a limiting volume of water [D2O:dioleoylphosphatidylcholine:alamethicin; 220:1:0.05; (M:M:M)], the exchange-protection factors exhibited helical periodicity with highly exchange-protected, and less well-protected, amides on the nonpolar and polar helix faces, respectively. The exchange data indicate that, under the conditions studied, alamethicin adopts a stable helical structure in DOPC bilayers in which all the potentially hydrogen-bonded amides are stabilized by helical hydrogen bonds. The protection factors define the orientation of the peptide helix with respect to an aqueous phase, which is either the bulk solution or water within parallel or antiparallel transmembrane arrays of reconstituted alamethicin.  相似文献   

18.
The preparation and application of a new linker for the synthesis of peptide amides using a modified Fmoc-method is described. The new anchor group was developed based on our experience with 4,4'-dimethoxybenzhydryl (Mbh)-protecting group for amides. Lability towards acid treatment was increased dramatically and results in an easy cleavage procedure for the preparation of peptide amides. The synthesis of N-9-fluorenylmethoxycarbonyl- ([5-carboxylatoethyl-2.4-dimethoxyphenyl)- 4'-methoxyphenyl]-methylamin is reported in detail. This linker was coupled to a commercially available aminomethyl polystyrene resin. Peptide synthesis proceeded smoothly using HOOBt esters of Fmoc-amino acids. Release of the peptide amide and final cleavage of the side chain protecting groups was accomplished by treatment with trifluoroacetic acid-dichloromethane mixtures in the presence of scavengers. The synthesis of peptide amides such as LHRH and C-terminal hexapeptide of secretin are given as examples.  相似文献   

19.
An enantioselective amidase from Rhodococcus erythropolis MP50 was purified to homogeneity. The enzyme has a molecular weight of about 480,000 and is composed of identical subunits with molecular weights of about 61,000. The NH2-terminal amino acid sequence was significantly different from previously published sequences of bacterial amidases. The purified amidase hydrolyzed a wide range of aliphatic and aromatic amides, The highest enzyme activities were found with amides carrying hydrophobic residues, such as pentyl or naphthoyl. The purified enzyme converted racemic 2-phenylpropionamide, naproxen amide [2-(6-methoxy-2-naphthyl) propionamide], and ketoprofen amide [2-(3'-benzoylphenyl)propionamide] to the corresponding S-acids with an enantiomeric excess of >99% and an almost 50% conversion of the racemic amides. The enzyme also hydrolyzed different alpha-amino amides but without significant enantioselectivity.  相似文献   

20.
Primary fatty acid amides (R-CO-NH2) and N-acylglycines (R-CO-NH-CH2-COOH) are classes of compounds that have only recently been isolated and characterized from biological sources. Key questions remain regarding how these lipid amides are produced and degraded in biological systems. Relative to the fatty acids, little has been done to develop methods to separate and quantify the fatty acid amides and N-acylglycines. We describe reversed phase HPLC methods for the separation of C2-C12 primary fatty acid amides and N-acylglycines and also C12-C22 fatty acid amides. Separation within each class occurs primarily on the basis of simple interactions between the acyl chain and the chromatographic stationary phase, but the polar headgroups on these and related fatty acids and N-acylethanolamides modulate the absolute retention in reversed phase mode. We use these methods to measure the enzyme-mediated, two-step conversion of N-octanoylglycine to octanoamide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号