首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Blue Dextran-Sepharose and Cibacron Blue F3GA-Sepharose (Blue Sepharose) were found to act as affinity adsorbents for orotate phosphoribosyltransferase (PRTase) and orotidine 5′-monophosphate (OMP) decarboxylase from bakers' yeast. Experiments with columns of Blue Dextran-Sepharose and partially purified preparations of the PRTase and decarboxylase revealed that both enzymes were selectively eluted by a low concentration (0.1–2 mm) of their respective substrate or immediate product. On the other hand, a much higher concentration (50–400 mm) of NaCl was required to displace these two enzymes from the above columns. Larger scale experiments showed that OMP decarboxylase in crude extracts was purified about 5700- and 6600-fold on Blue Sepharose using 0.5 mm OMP and 2 mm uridine 5′-monophosphate (UMP) as the eluting ligand, respectively. In contrast, orotate PRTase did not bind to Blue Sepharose unless crude extracts were first subjected to gel filtration. The resulting preparation of orotate PRTase, purified about sixfold with respect to cell-free extracts, was purified an additional 200- and 40-fold when the enzyme was eluted from Blue Sepharose with 0.5 mm OMP and 1 mm 5-phosphoribosyl 1-pyrophosphate (PP-ribose-P), respectively. Blue Dextran-Sepharose, on the other hand, was found to provide a lower degree of enzyme purification and exhibited a lower sample-binding capacity. Samples of the PRTase and decarboxylase that had been purified about 200- and 6000-fold, respectively, on Blue Sepharose displayed a major protein band and one or more minor bands when subjected to polyacrylamide gel electrophoresis. Enzyme activity coincided with the major band in all cases.  相似文献   

2.
Three forms of alpha-glucosidase, I, II, and III, have been purified from the whole body extract of adult flies of Drosophila melanogaster in yields of 2.1, 5.3, and 6.7%, respectively. The purification procedures involved ammonium sulfate fractionation, Con A-Sepharose 4B affinity chromatography, DEAE-Sepharose CL-6B ion exchange chromatography, Sephacryl S-200 gel filtration, and preparative gel electrophoresis. Each purified enzyme showed a single band on polyacrylamide gel on both protein and enzyme activity staining. The molecular weights of alpha-glucosidases I, II, and III were estimated to be 200,000, 56,000, and 76,000, respectively, by gel filtration. SDS gels indicated that alpha-glucosidases II and III were each composed of a single polypeptide chain, whereas alpha-glucosidase I was composed of two identical subunits. Both alpha-glucosidases II and III hydrolyzed sucrose and p-nitrophenyl-alpha-D-glucoside (PNPG), but alpha-glucosidase I hydrolyzed PNPG to a much lesser extent than sucrose. For sucrose the pH optima of alpha-glucosidases I, II, and III were pH 6.0, 5.0, and 6.0 and the Km values were 13.1, 8.9, and 10 mM, respectively. For PNPG the pH optima of alpha-glucosidases II and III were pH 5.5 and 6.5 and the Km values were 0.77 and 0.21 mM, respectively.  相似文献   

3.
In human liver, almost 90% of malic enzyme activity is located within the extramitochondrial compartment, and only approximately 10% in the mitochondrial fraction. Extramitochondrial malic enzyme has been isolated from the post-mitochondrial supernatant of human liver by (NH4)2SO4 fractionation, chromatography on DEAE-cellulose, ADP-Sepharose-4B and Sephacryl S-300 to apparent homogeneity, as judged from polyacrylamide gel electrophoresis. The specific activity of the purified enzyme was 56 mumol.min-1.mg protein-1, which corresponds to about 10,000-fold purification. The molecular mass of the native enzyme determined by gel filtration is 251 kDa. SDS/polyacrylamide gel electrophoresis showed one polypeptide band of molecular mass 63 kDa. Thus, it appears that the native protein is a tetramer composed of identical-molecular-mass subunits. The isoelectric point of the isolated enzyme was 5.65. The enzyme was shown to carboxylate pyruvate with at least the same rate as the forward reaction. The optimum pH for the carboxylation reaction was at pH 7.25 and that for the NADP-linked decarboxylation reaction varied with malate concentration. The Km values determined at pH 7.2 for malate and NADP were 120 microM and 9.2 microM, respectively. The Km values for pyruvate, NADPH and bicarbonate were 5.9 mM, 5.3 microM and 27.9 mM, respectively. The enzyme converted malate to pyruvate (at optimum pH 6.4) in the presence of 10 mM NAD at approximately 40% of the maximum rate with NADP. The Km values for malate and NAD were 0.96 mM and 4.6 mM, respectively. NAD-dependent decarboxylation reaction was not reversible. The purified human liver malic enzyme catalyzed decarboxylation of oxaloacetate and NADPH-linked reduction of pyruvate at about 1.3% and 5.4% of the maximum rate of NADP-linked oxidative decarboxylation of malate, respectively. The results indicate that malic enzyme from human liver exhibits similar properties to the enzyme from animal liver.  相似文献   

4.
Poly(A) polymerase [EC 2.7.7.19] was highly purified from beef liver nuclei by the use of column chromatographies on heparin-Sepharose 4B and Blue Dextran-Sepharose 4B. The purified enzyme showed one major protein band of the molecular weight of 57,000 in SDS polyacrylamide gel electrophoresis, which agreed with the molecular weight estimated from glycerol gradient centrifugation. The enzyme required the presence of Mn2+ for its activity but was almost completely inactive with Mg2+. It incorporated specifically ATP into polynucleotide as a sole substrate. The enzyme activity dependend entirely on the addition of exogenous polynucleotide primer. It showed certain selectivity for the primers. The most effective among the tested polynucleotides was a short poly(A), for which the Km of the enzyme was shown to be 7 microM. Poly(G, U) and short poly(U) also primed the reaction, but tRNA, phage RNA, poly(G), and poly(C) were inactive. Based on observed specificity for the primer, the role of this enzyme in the cell nuclei was discussed. Digestion of the reaction product of this enzyme by two specific exonucleases, snake venom and spleen phosphodiesterases, suggested that this enzyme catalyzed the covalent bonding of the substrate to the 3' terminus of the primer as in the manner expected for in vivo polyadenylation.  相似文献   

5.
Neuronal and glial surface glycoproteins have been isolated from human foetal brains by affinity chromatography on 8 M urea or 6 M guanidine-treated Con A-Sepharose 4B at 4 degrees C and three groups of glycoproteins of molecular mass 65-73 kDa, 52-63 kDa and 43-48 kDa have been identified on SDS/PAGE. These glycoproteins exhibited anomalous behaviour on SDS/PAGE, indicating the existence of a gradation of mutually interconvertible protein-SDS aggregates in dynamic equilibrium with one another. Deglycosylation and deacylation did not alter the SDS/PAGE multiple band pattern. Purified glycoproteins contained 160 +/- 90 micrograms carbohydrate/mg protein, and a sialic acid content of 25 +/- 5 nmole/mg protein. The N-terminals were blocked. The glycoproteins moved preferentially on acid/urea/PAGE. Sepharose 6B gel filtration in the absence of lipid and detergents resolved the glycoproteins into an excluded peak I and a low molecular mass peak II. Peaks I and II were non-interconvertible on Sepharose 6B gel filtration or on reversed phase HPLC in an isopropanol/water/TFA gradient system. Both peaks rendered a single fast moving band of identical mobility on acid/urea/PAGE, suggesting that peak I was possibly a micellar aggregate of the monomeric peak II. The glycoproteins were refractory to digestion by trypsin or pronase and reacted identically towards various lectins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Choline acetyltransferase (ChAT; EC 2.3.1.6) was purified from the heads of Schistocerca gregaria to a final specific activity of 1.61 mumol acetylcholine (ACh) formed min-1 mg-1 protein. The molecular mass of the enzyme as determined by gel filtration is 66,800 daltons. The final enzyme preparation showed one major band at 65,000 daltons on sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis, which corresponds with the native molecular mass of the enzyme, a band at 56,000 daltons, and two bands at 40,500 and 38,000 daltons. Antibodies raised against ChAT in rabbit react only with the active band on native gel after Western blotting. They strongly react with the 65,000-dalton polypeptide band on Western blots of SDS gel separation of pure preparation of enzyme and with both the 65,000- and 56,000-dalton bands after SDS gel separation of crude extract.  相似文献   

7.
An extracellular enzyme that produces di-D-fructofuranose 2′,1;2,1′-dianhydride (difructose anhydride I= DFA I) from inulin was purified from the culture broth of Streptomyces sp. MCI-2524. The purification enhanced the specific activity 7-fold with an overall yield of 17%. The purified enzyme, when electrophoresed on a SDS polyacrylamide gel, gave a single band corresponding to a molecular weight of 36 kDa. Gel filtration chromatography gave a single peak that eluted at a position corresponding to 70 kDa. The enzyme was active from pH 3.0 to pH 9.0, and at temperatures up to 65°C. Maximal activity was observed at pH 6.0, at 55°C. The enzyme was inhibited by Cu2+.  相似文献   

8.
Two molecular species of endoglycoceramidase (designated as endoglycoceramidases I and II) were purified 32,700 and 43,000 times with overall recoveries of 4.8 and 2.9%, respectively, from a culture fluid of the mutant strain M-750 of Rhodococcus sp., cultivated in the absence of inducers (ganglioside). After being stained with Coomassie Brilliant Blue or a silver-staining solution, each purified enzyme showed a single protein band on polyacrylamide gel electrophoresis in the presence and absence of sodium dodecyl sulfate. The apparent molecular weights, as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, were 55,900 for endoglycoceramidase I and 58,900 for endoglycoceramidase II, and their pIs were 5.3 and 4.5, respectively. both were capable of hydrolyzing the glucosylceramide linkage of ganglio-type, lacto-type, and globo-type glycosphingolipids to afford intact oligosaccharides and ceramides. Globo-type glycosphingolipids were strongly resistant to hydrolysis by endoglycoceramidase II in comparison with endoglycoceramidase I. Neither could hydrolyze gala-type glycosphingolipids, cerebrosides, sulfatides, glycoglycerolipids, or sphingomyelins. In addition to these two enzymes, the strain M-750 produced a third minor molecular species of endoglycoceramidase designated as endoglycoceramidase III. It was found capable of specifically hydrolyzing the galactosylceramide linkage of gala-type glycosphingolipids that were not hydrolyzable at all by endoglycoceramidases I or II. The molecular weights of the oligosaccharide and ceramide released from asialo GM1, incubated either in normal H2O or H2(18)O with the enzyme, were compared by fast atom bombardment-mass spectrometry. The result clearly indicated that both endoglycoceramidases I and II hydrolyze the glycosidic linkage between the oligosaccharide and ceramide. Thus, a systematic name of the endoglycoceramidase should be glycosyl-N-acyl-sphingosine 1,1-beta-D-glucanohydrolase.  相似文献   

9.
Purification of RNAase II to electrophoretic homogeneity is described. The exonuclease is activated by K+ and Mg2+ and hydrolyses poly(A) to 5'-AMP, exclusively as described by Nossal and Singer (1968, J. Biol. Chem. 243, 913--922). To separate RNAase II from ribosomes, DEAE-cellulose chromatography was used. Two additional chromatographic steps give a preparation that yields 10 bands after analytical polyacrylamide gel electrophoresis. Preparative polyacrylamide gel electrophoresis resulted in a final preparation which on analytical polyacrylamide gels gives a single band. A molecular weight of 76 000 +/- 4000 was obtained from Sephadex G-200 chromatography, with three bands from sodium dodecyl sulfate (SDS) denaturation and SDS gel electrophoresis. The subunits have a molecular weight of 40 000 +/- 2000, 33 000 +/- 2000, and 26 000 +/- 1000. The enzyme thus appears to consist of three dissimilar subunits.  相似文献   

10.
Bilophila wadsworthia RZATAU is a Gram-negative bacterium which converts the sulfonate taurine (2-aminoethanesulfonate) to ammonia, acetate and sulfide in an anaerobic respiration. Taurine:pyruvate aminotransferase (Tpa) catalyses the initial metabolic reaction yielding alanine and sulfoacetaldehyde. We purified Tpa 72-fold to apparent homogeneity with an overall yield of 89%. The purified enzyme did not require addition of pyridoxal 5'-phosphate, but highly active enzyme was only obtained by addition of pyridoxal 5'-phosphate to all buffers during purification. SDS/PAGE revealed a single protein band with a molecular mass of 51 kDa. The apparent molecular mass of the native enzyme was 197 kDa as determined by gel filtration, which indicates a homotetrameric structure. The kinetic constants for taurine were: Km = 7.1 mM, Vmax = 1.20 nmol.s-1, and for pyruvate: Km = 0.82 mM, Vmax = 0.17 nmol.s-1. The purified enzyme was able to transaminate hypotaurine (2-aminosulfinate), taurine, beta-alanine and with low activity cysteine and 3-aminopropanesulfonate. In addition to pyruvate, 2-ketobutyrate and oxaloacetate were utilized as amino group acceptors. We have sequenced the encoding gene (tpa). It encoded a 50-kDa peptide, which revealed 33% identity to diaminopelargonate aminotransferase from Bacillus subtilis.  相似文献   

11.
H Yang  R H Abeles 《Biochemistry》1987,26(13):4076-4081
4'-Phosphopantothenoylcysteine decarboxylase was purified 900-fold from Escherichia coli B with an overall yield of 6%. The enzyme migrates as a single band with a molecular weight of 35,000 +/- 3000 in 10% polyacrylamide gel electrophoresis under denaturing conditions. The native enzyme has an apparent molecular weight of 146,000 +/- 9000 as determined by a gel exclusion column. At pH 7.6 and 25 degrees C, Km = 0.9 mM and Vmax = 600 nmol/(min X mg of protein). The pH optimum for Vmax is between 7.5 and 7.7. Hydroxylamine, phenylhydrazine, potassium cyanide, and sodium borohydride as well as pyridoxal phosphate and pyridoxal inactivated the enzyme. The enzyme contains covalently bound pyruvate as suggested by the isolation of [3H]lactate and pyruvate from [3H]NaBH4-reduced enzyme and native enzyme, respectively. One mole of [3H]lactate was isolated per 39,000 g of [3H]NaBH4-reduced and completely inactivated enzyme, and 1 mol of pyruvate was isolated per 31,000 +/- 4000 g of native enzyme. Mild base treatment released lactate and pyruvate from the reduced and the native enzymes, respectively, suggesting the pyruvate is attached to the enzyme by an ester bond. These findings are in accord with similar results obtained with the horse liver enzyme (R. Scandurra, personal communication). The presence of covalently bound pyruvate in the bacterial and mammalian enzymes suggests that pyruvate plays a major role in the mechanism of action.  相似文献   

12.
Sodium- and potassium-activated adenosinetriphosphatase (Na+, K+-ATPase) purified from dog kidney outer medulla was examined by polyacrylamide gel electrophoresis and by photoaffinity labeling with N-(ouabain)-N'-(2-nitro-4-azidophenyl)-ethylenediamine (NAP-ouabain). The large subunit band (alpha-band) split into two bands on the gel after the enzyme was heat-treated in the presence of 1% sodium dodecylsulfate (SDS). Of the two bands (alpha I and alpha II), alpha I had the same electrophoretic mobility as the original band, while alpha II moved slightly faster. Total conversion into alpha II was not observed, about half of the original remaining as alpha I. Below 60 degree C, heat treatment did not produce alpha II. Phenylmethylsulfonyl fluoride did not prevent the appearance of alpha II. Both alpha I and alpha II were labeled with [3H]NAP-ouabain. Nonspecific incorporation of [3H]NAP-ouabain also occurred irrespective of illumination, but it was removed either by diffusion during staining and destaining of the gel or by treatment of the enzyme with trichloroacetic acid. It is tentatively concluded that the splitting of the band reflects some intrinsic differences in situ of the alpha-subunit of dog kidney membrane Na+,K+-ATPase.  相似文献   

13.
苦瓜籽核糖体失活蛋白的理化性质及生物活性   总被引:13,自引:0,他引:13  
采用硫酸铵分级分离,假配基亲和层析和SephacrylS-100分子筛层析等方法,从苦瓜籽中获得核糖体失活蛋白(RIP).经SDS-PAGE、PAGE、IEF和PAS方法分析均表明为单一蛋白着色带或单一糖蛋白着色带.根据SDS-PAGE和Sephadex G-150分子筛层析结果计算其相对分子质量为3.0×104,经IEF-PAGE结果计算其pI为8.9~9.0.对无细胞系统中蛋白质生物合成抑制活性明显,其IC50为5.3×10- 10 m ol/L左右.体外生物活性试验结果表明其对人肝癌细胞、Vero、SP2/0、3T3、Kb、Navana 等肿瘤细胞株均表现有不同程度的抑制作用.而对完整细胞人胚肺二倍体细胞却毒性极小.因此,上述实验结果为该RIP的进一步深入研究和有可能开发成免疫毒素的高效弹头药物提供了一定的工作基础.  相似文献   

14.
Blue crab muscle (Callinectes danae) glycogen phosphorylase a was purified by adsorption of a crude extract on a starch column, elution with a dilute glycogen solution, selective precipitation with ammonium sulfate, dialysis against a solution containing ammonium sulfate and ethylenediaminetetraacetate, followed by centrifugation and chromatography on Sephadex G-25 (sp act 64.5 IU, recovery of 53.8%, and a purification factor of 189). The lyophilized preparation is stable for several months. Disc electrophoresis of the purified phosphorylase yields two protein bands, both with enzymatic activity of the a form. One of the protein bands represents about 10% of the total amount of protein present in the two bands. The molecular weight of the enzyme is 176,000 as determined by ultracentrifugation in a sucrose density gradient and 180,000 as determined by discontinuous polyacrylamide gel electrophoresis. The molecular weight found by disc electrophoresis corresponds to the main protein band. Crab muscle phosphorylase a is not associated under electrophoretic conditions in which rabbit muscle phosphorylase a shows association behavior. Subunit studies by continuous SDS-gel electrophoresis suggest that crab muscle phosphorylase a possesses only one subunit. Pyridoxal-5′-phosphate is a cofactor of the enzyme.  相似文献   

15.
A lactonase hydrolyzing (R)-5-oxo-2-tetrahydrofurancarboxylic acid to D-alpha-hydroxyglutaric acid was purified 170-fold with 2% recovery to near homogeneity from crude extracts of Burkholderia sp. R-711, which had been isolated as a bacterium able to assimilate (R)-5-oxo-2-tetrahydrofurancarboxylic acid. The molecular mass was estimated to be 33 kDa by gel filtration. The purified preparation migrated as a single band of molecular mass 38 kDa upon SDS-PAGE. The maximum activity was observed at pH 7.0-8.0 and 35-40 degrees C. The enzyme required no added cofactors or metal ions; the activity was inhibited to 60-100% by SH-blocking reagents, but was not affected by metal-chelating reagents. The enzyme showed lower activity and affinity toward (S)-5-oxo-2-tetrahydrofurancarboxylic acid, but did not act on other natural and synthetic lactones tested.  相似文献   

16.
The hemocyanin of the North American tarantula Eurypelma californicum (Dugesiella californica) is dissociated at pH 9.6 into monomers (Mr about 70 000) and dimers (Mr about 140 000), which were separated by gel filtration. The monomer peak was resolved by preparative polyacrylamide gel electrophoresis and yielded 4 protein bands, three of which (1, 3 and 4M) are apparently homogeneous. Band 2 contains two sub-fractions (2I and 2II). The dimer peak contains two dimers (bands 4D and 5). Upon treatment with 5mM cysteine the dimer band 5 is dissociated, yielding only one type of monomer identical with band 3. The other dimer, which was only partially dissociated by 10mM EDTA, is most probably a heterodimer, one component being electrophoretically indistinguishable from band 2II. After treatment of the native hemocyanin with sodium dodecylsulfate and analysis in gradient gel slabs, 6 polypeptide chains were observed (labeled a - f). They correspond to the products of alkaline dissociation as follows: band 1 = e, band 2I = a, band 2II = c, band 3 = f, band 4M = d, band 4D = b plus c, band 5 = f. The molecular weights were determined by dodecylsulfate gel electrophoresis in gradient gels, and by sedimentation equilibrium analysis and found to range between 67 000 and 76 000. The sedimentation coefficients are between 4.4 and 4.7 S for the monomers and 6.6 and 6.7 for the dimers. The isoelectric points range from pH 4.5 to pH 5.4. The findings are discussed with respect to the limitations of molecular weight determination by conventional dodecylsulfate gel electrophoresis, to the structure of the hemocyanin oligomers and to possible biological significance.  相似文献   

17.
Two GM1-beta-galactosidases, beta-galactosidases I, and II, have been highly purified from bovine brain by procedures including acetone and butanol treatments, and chromatographies on Con A-Sepharose, PATG-Sepharose, and Sephadex G-200. beta-Galactosidase I was purified 30,000-fold and beta-galactosidase II 19,000-fold. Both enzymes appeared to be homogeneous, as judged from the results of polyacrylamide disc gel electrophoresis. Enzyme I had a molecular weight of 600,000-700,000 and enzyme II one of 68,000, as determined on gel filtration. On sodium dodecyl sulfate polyacrylamide slab gel electrophoresis under denaturing conditions, enzyme II gave a single band with a molecular weight of 62,000, while enzyme I gave two minor bands with molecular weights of 32,000 and 20,000 in addition to the major band at 62,000. Both enzymes liberated the terminal galactose from GM1 ganglioside and lactosylceramide but not from galactosylceramide. Enzyme I showed a pH optimum of 4.0 and was heat stable, while enzyme II showed a pH optimum of 5.0 and lost 50% of its activity in 15 min at 45 degrees C. Enzyme I showed a pI of 4.2 and enzyme II one of 5.9.  相似文献   

18.
Some molecular properties of asparagine synthetase from rat liver   总被引:1,自引:0,他引:1  
Asparagine synthetase purified from rat liver reveals two species (slower migrating band I and faster migrating band II) when subjected to polyacrylamide gel electrophoresis under nondenaturing conditions (S. Hongo and T. Sato (1981) Anal. Biochem. 114, 163-166). We have investigated some molecular properties of these species. Elution of band I from the gel and re-electrophoresis showed that band I yielded band II similar to that of the initial run. Peptide maps by limited proteolysis were very similar and amino acid compositions were also alike in the two species. L-Lysine was identified as the sole NH2-terminal amino acid in both the species. By cross-linking experiments the enzyme was shown to be a dimeric protein. When the purified enzyme was subjected to isoelectric focusing the enzyme activity and protein focused at pH 6.0 in a single peak. These results demonstrate that rat liver asparagine synthetase is composed of two identical subunits. The enzyme, inactivated by storage at -20 degrees C for about 3 months, showed aggregated forms in polyacrylamide gel electrophoresis, and was reactivated markedly by the addition of dithiothreitol.  相似文献   

19.
Insulin-like growth factor I (IGF I)/somatomedin-C (SM-C) was purified from lyophilized human serum by acid-ethanol extraction. The extract was precipitated with acetone-ethanol. The precipitate was purified by Sephadex G-50 chromatography. The protein peak within a molecular weight range of 5000-10 000 was further purified with FPLC-reversed phase chromatography using a Pep RPC HR 5/5 column (Pharmacia) with a solvent system of acetonitrile (CH3CN) and 0.1% trifluoroacetic acid (TFA) in water. The purification of IGF I was monitored by radioimmunoassay for SM-C. Purity was established by analytical isoelectric focusing and by SDS polyacrylamide gel electrophoresis. Analytical isoelectric focusing showed one single protein band with an apparent pI of 8.3 +/- 0.1. SDS polyacrylamide gel electrophoresis showed also one single protein band with an apparent molecular weight of 7000. Biological activity was demonstrated by measuring the (3H)thymidine incorporation into DNA of cultured arterial smooth muscle cells.  相似文献   

20.
Thioltransferase was purified 650-fold from rabbit liver by procedures including acid treatment, heat treatment, gel filtration on Sephadex G-50, column chromatography on DEAE-cellulose, isoelectric focusing (pH 3.5-10) and gel filtration on Sephadex G-75. The final enzyme preparation was almost homogeneous in polyacrylamide gel electrophoretic analysis. Only one active peak with an apparent molecular weight (Mr) of 13,000 was detected by gel filtration on Sephadex G-50 and only a single protein band with a molecular weight of 12,400 was detected by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. Isoelectric focusing revealed only one enzyme species, having an isoelectric point (pI) of 5.3. The enzyme has an optimum pH about 3.0 with S-sulfocysteine and GSH as substrates. The purified enzyme utilized some disulfides including S-sulfocysteine, alpha-chymotrypsin, trypsin, bovine serum albumin, and insulin as substrates in the presence of GSH. The enzyme does not act as a protein : disulfide isomerase (the activity of which can be measured in terms of reactivation of randomly reoxidized soybean Kunitz trypsin inhibitor). The enzyme activity was inhibited by chloramphenicol, but not by bacitracin. The inhibition by chloramphenicol was non-competitive (apparent K1 of 0.5 mM). Thioltransferase activity was found in the cytosol of various rabbit tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号