首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chondroitin and dermatan sulfate (CS and DS) chains were isolated from bovine tracheal cartilage and pig intestinal mucosal preparations and fragmented by enzymatic methods. The oligosaccharides studied include a disaccharide and hexasaccharides from chondroitin ABC lyase digestion as well as trisaccharides already present in some commercial preparations. In addition, other trisaccharides were generated from tetrasaccharides by chemical removal of nonreducing terminal residues. Their structures were examined by high-field 1H and 13C NMR spectroscopy, after reduction using sodium borohydride. The main hexasaccharide isolated from pig intestinal mucosal DS was found to be fully 4-O-sulfated and have the structure: DeltaUA(beta1-3)GalNAc4S(beta1-4)L-IdoA(alpha1-3)GalNAc4S(beta1-4)L-IdoA(alpha1-3)GalNAc4S-ol, whereas one from bovine tracheal cartilage CS comprised only 6-O-sulfated residues and had the structure: DeltaUA(beta1-3)GalNAc6S(beta1-4)GlcA(beta1-3)GalNAc6S(beta1-4)GlcA(beta1-3)GalNAc6S-ol. No oligosaccharide showed any uronic acid 2-sulfation. One novel disaccharide was examined and found to have the structure: GalNAc6S(beta1-4)GlcA-ol. The trisaccharides isolated from the CS/DS chains were found to have the structures: DeltaUA(beta1-3)GalNAc4S(beta1-4)GlcA-ol and DeltaUA(beta1-3)GalNAc6S(beta1-4)GlcA-ol. Such oligosaccharides were found in commercial CS/DS preparations and may derive from endogenous glucuronidase and other enzymatic activity. Chemically generated trisaccharides were confirmed as models of the CS/DS chain caps and included: GalNAc6S(beta1-4)GlcA(beta1-3)GalNAc4S-ol and GalNAc6S(beta1-4)GlcA(beta1-3)GalNAc6S-ol. The full assignment of all signals in the NMR spectra are given, and these data permit the further characterization of CS/DS chains and their nonreducing capping structures.  相似文献   

2.
The antler is the most rapidly growing tissue in the animal kingdom. According to previous reports, antler glycosaminoglycans (GAGs) consist of all kinds GAGs except for heparan sulfate (HS). Chondroitin sulfate is the major antler GAG component comprising 88% of the total uronic acid content. In the current study, we have isolated HS from antler for the first time and characterized it based on both NMR spectroscopy and disaccharide composition analysis. Antler GAGs were isolated by protease treatment and followed by cetylpyridinium chloride precipitation. The sensitivity of antler GAGs to heparin lyase III showed that this sample contained heparan sulfate. After incubation of antler GAGs with chondroitin lyase ABC, the HS-containing fraction was recovered by ethanol precipitation. The composition of HS disaccharides in this fraction was determined by its complete depolymerization with a mixture of heparin lyase I, II, and III and analysis of the resulting disaccharides by the reversed-phase (RP) ion pairing-HPLC, monitored by the fluorescence detection using 2-cyanoacetamide as a post-column labeling reagent. Eight unsaturated disaccharides (DeltaUA-GlcNAc, DeltaUA-GlcNS, DeltaUA-GlcNAc6S, DeltaUA2S-GlcNAc, DeltaUA-GlcNS6S, DeltaUA2S-GlcNS, DeltaUA2S-GlcNAc6S, DeltaUA2S-GlcNS6S) were produced from antler HS by digestion with the mixture of heparin lyases. The total content of 2-O-sulfo disaccharide units in antler HS was higher than that of heparan sulfate from most other animal sources.  相似文献   

3.
A series of well-defined oligosaccharide fragments of the capsular polysaccharide of Streptococcus pneumoniae type 3 has been generated. Partial-acid hydrolysis of the capsular polysaccharide, followed by fractionation of the oligosaccharide mixture by Sepharose Q ion-exchange chromatography yielded fragments containing one to seven [-->3)-beta-D-GlcpA-(1-->4)-beta-D-Glcp-(1-->] repeating units. The isolated fragments were analysed for purity by high-pH anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD) using an IonPac AS11 column, and their structures were verified by 1H NMR spectroscopy and nano-electrospray mass spectrometry. The oligosaccharides can be used to produce neoglycoprotein vaccines with a defined carbohydrate part.  相似文献   

4.
3-O-Sulfation of glucosamine by heparan sulfate D-glucosaminyl 3-O-sulfotransferase (3-OST-1) is the key modification in anticoagulant heparan sulfate synthesis. However, the heparan sulfates modified by 3-OST-2 and 3-OST-3A, isoforms of 3-OST-1, do not have anticoagulant activity, although these isoforms transfer sulfate to the 3-OH position of glucosamine residues. In this study, we characterize the substrate specificity of purified 3-OST-3A at the tetrasaccharide level. The 3-OST-3A enzyme was purified from Sf9 cells infected with recombinant baculovirus containing 3-OST-3A cDNA. Two 3-OST-3A-modified tetrasaccharides were purified from the 3-O-(35)S-sulfated heparan sulfate that was digested by heparin lyases. These tetrasaccharides were analyzed using nitrous acid and enzymatic degradation combined with matrix-assisted laser desorption/ionization-mass spectrometry. Two novel tetrasaccharides were discovered with proposed structures of DeltaUA2S-GlcNS-IdoUA2S-[(35)S]GlcNH(2)3S and DeltaUA2S-GlcNS-IdoUA2S-[3-(35)S]GlcNH(2)3S6S . The results demonstrate that 3-OST-3A sulfates N-unsubstituted glucosamine residues, and the 3-OST-3A modification sites are probably located in defined oligosaccharide sequences. Our study suggests that oligosaccharides with N-unsubstituted glucosamine are precursors for sulfation by 3-OST-3A. The intriguing linkage between N-unsubstituted glucosamine and the 3-O-sulfation by 3-OST-3A may provide a clue to the potential biological functions of 3-OST-3A-modified heparan sulfate.  相似文献   

5.
Syntheses of oligosaccharides expressed on cells are indispensable for the improvement of the functional analyses of the oligosaccharides and their applications. We are developing saccharide primers for synthesizing oligosaccharides using living cells. In this study, dodecyl 2-acetamido-2-deoxy-beta-D-glucopyranoside (GlcNAc-C12) and dodecyl beta-D-galactopyranosyl-(1-->4)-2-acetamido-2-deoxy-beta-D-glucopyranoside (LacNAc-C12) were examined for their abilities to prime the syntheses of neolacto-series oligosaccharides in HL60 cells. When GlcNAc-C12 was incubated with HL60 cells in serum-free medium for 2 days, 14 kinds of glycosylated products were collected from the culture medium. They were separated by high-performance liquid chromatography. The sequences of the products were determined to be neolacto-series oligosaccharides including Lewis(X), sialyl Lewis(X), polylactosamine, and sialylpolylactosamine by mass spectrometry. GlcNAc-C12 was also glycosylated by B16 cells and gave sialyllactosamine. Furthermore, LacNAc-C12 gave similar glycosylated products to GlcNAc-C12.  相似文献   

6.
Cell-free enzyme particles from mung bean seedlings catalyze the incorporation of mannose from GDP-[14C]mannose and GlcNAc from UDP-[3H]GlcNAc into glycolipids and into glycoprotein. The most rapidly labeled product from GDP-mannose was characterized as a mannosyl-phosphoryl-polyisoprenol, whereas that from UDP-GlcNAc was a mixture of GlcNAc-(pyro)phosphoryl-polyisoprenol and a disaccharide composed of two N-acetylglucosamine residues attached to the polyisoprenol by a phosphoryl or pyrophosphoryl linkage. Radioactivity from GDP-mannose and UDP-GlcNAc was also incorporated into more polar lipids which have been partially characterized as a series of oligosaccharide-(pyro)phosphoryl-lipids. The mannose-labeled oligosaccharides released from these lipids by mild acid hydrolysis were found to contain GlcNAc at their reducing end indicating that these oligosaccharides contain both GlcNAc and mannose. Both the GlcNAc-labeled and the mannose-labeled oligosaccharides gave multiple radioactive peaks upon paper chromatography indicating that they are composed of a series of different sized oligosaccharides. Finally, radioactivity from GDP-[14C]mannose and UDP-[3H]GlcNAc is incorporated into an insoluble component. Ten percent of the mannose label and all of the GlcNAc label in this insoluble material could be solubilized by digestion with Pronase. The glycopeptides released by Pronase digestion appeared to be approximately the same size as the oligosaccharides from the lipid-linked oligosaccharides based on gel filtration chromatography on Sephadex G-50. The results are consistent with a mechanism for glycoprotein synthesis involving lipid-linked oligosaccharide intermediates.  相似文献   

7.

Background

-Acetylhistidine (NAH) is present in very high concentrations exclusively in the brain and lens of ectothermic vertebrates, including ray-finned fishes, amphibians and reptiles, and not in those of endothermic birds and mammals. Although NAH is known to be synthesized from l-His and acetyl-CoA by histidine N-acetyltransferase (HISAT; EC 2.3.1.33), the gene encoding HISAT has remained unknown for any organism.

Methods

HISAT was purified from the blue mackerel brain, and its partial amino acid sequences were analyzed using mass spectrometry and Edman degradation. Using the sequence information, the corresponding gene was cloned and sequenced. Recombinant proteins encoded by the fish gene and its human homologue were expressed in a cell-free translation system.

Results

HISAT was identified to be a protein encoded by a fish homologue of the human predicted gene NAT16 (N-acetyltransferase 16). HISAT is an unstable enzyme that is rapidly and irreversibly inactivated during preincubation at 37 °C in the absence of acetyl-CoA. In fish brain, the HISAT gene is expressed as two splice variants containing an identical ORF but differing lengths of 5′-UTR. Both variants are expressed exclusively in the fish brain and lens. Interestingly, the recombinant human NAT16 protein, unlike the recombinant fish HISAT, has only trace enzyme activity for NAH synthesis.

Conclusions

These results propose that the function of mammalian NAT16 has been altered from l-His acetylation (NAH synthesis) to another different biological role.

General significance

The molecular identification of HISAT will allow progress in the understanding of the physiological function of NAH in ectothermic vertebrates.  相似文献   

8.
Hyaluronic acid (HA) was treated with hyaluronate lyase (GBS HA lyase, E.C. 4.2.2.1, from Streptococcus agalactiae strain 4755), and the products have been analyzed by capillary electrophoresis (CE-UV and online CE-ESIMS), gel-permeation chromatography (GPC) and viscosimetric measurements. The resulting electropherograms showed that the enzyme produced a mixture of oligosaccharides with a 4,5-unsaturated uronic acid nonreducing terminus. More exhaustive degradation of HA led to increasing amounts of di-, tetra-, hexa-, octa- and decasaccharides. Using CE, linear relationships were found between peak area of the observed oligosaccharides and reaction time. Determination of viscosity at different stages of reaction yielded an initial rapid decrease following Michaelis-Menten theory. A reaction time-dependent change in the elution position of the HA peak due to partial digestion of HA with GBS hyaluronate lyase has been observed by GPC. These results indicated that the HA lyase under investigation is an eliminase that acts in a nonprocessive endolytic manner, as at all stages of digestion a mixture of oligosaccharides of different size were found. For GBS HA lyase from Streptococcus agalactiae strain 3502, previously published findings reported an action pattern that involves an initial random endolytic cleavage followed by rapid exolytic and processive release of unsaturated disaccharides. Our results suggest that differences between the two enzymes from distinct S. agalactiae strains (GBS strains 4755 and 3502) have to be considered.  相似文献   

9.
Cesaretti M  Luppi E  Maccari F  Volpi N 《Glycobiology》2004,14(12):1275-1284
Heparin with high anticoagulant activity (activated partial thromboplastin time of 347 +/- 56.4 and anti-Xa activity of 317 +/- 48.3) was isolated from the marine clam species Tapes phylippinarum in an amount of approximately 2.1 mg/g dry animals. Agarose-gel electrophoresis showed a high content of the slow-moving heparin component (22 +/- 6.8%) and 78 +/- 5.4% of the fast-moving species. An average molecular mass of 13,600 was calculated by PAGE analysis, whereas a number average molecular weight Mn value of 10,700, a weight average molecular weight Mw of 14,900, and a dispersity index Mn/Mw of 1.386 were obtained by high-performance size-exclusion chromatography. Structural analysis of clam heparin, performed by depolymerizing heparin samples with heparinase (EC 4.2.2.7) and then separating the resulting unsaturated oligosaccharides by strong anion exchange-HPLC revealed the presence of large amounts (more than 130% than standard pharmaceutical heparin obtained from bovine intestine) of the oligosaccharide sequence bearing part of the ATIII-binding region, DeltaUA2S (1-->4)-alpha-D-GlcN2S6S (1-->4)-alpha-L-IdoA (1-->4)-alpha-D-GlcNAc6S (1-->4)-beta-D-GlcA (1-->4)-alpha-D-GlcN2S3S6S in the T. phylippinarum heparin, in comparison with bovine mucosal heparin and a sample of porcine mucosal heparin previously published. Furthermore, as expected from the oligosaccharide compositional analysis, due to the presence of a great mol % (80.6%) of the trisulfated disaccharide DeltaUA2S(1-->4)-alpha-D-GlcN2S6S, mollusc heparin is a more sulfated polysaccharide than bovine mucosal heparin (73.5%) and a sample of porcine mucosal (72.8%) heparin previously reported. To our knowledge, this is the first article describing a clam heparin having the ATIII binding site mainly identical to that of human and porcine intestinal mucosal heparins and bovine intestinal mucosal heparin but different from that found in beef lung heparin.  相似文献   

10.
Yang HO  Gunay NS  Toida T  Kuberan B  Yu G  Kim YS  Linhardt RJ 《Glycobiology》2000,10(10):1033-1039
Eight oligosaccharides were prepared from dermatan sulfate (DS) and their structures were elucidated. Porcine intestinal mucosal DS was subjected to controlled depolymerization using chondroitin ABC lyase (chondroitinase ABC). The oligosaccharide mixture formed was fractionated by low-pressure gel permeation chromatography (GPC). Size uniform mixtures of disaccharides, tetrasaccharides, hexasaccharides, octasaccharides, decasaccharides, and dodecasaccharides were obtained. Each size-fractionated mixture was then purified on the basis of charge by repetitive semi-preparative strong-anion-exchange (SAX) high-performance liquid chromatography (HPLC). This approach has led to the isolation of six homogeneous oligosaccharides. The size of the oligosaccharides were determined using GPC-HPLC. Treatment of tetrasaccharide and hexasaccharide fragments with Hg(OAc)2 afforded trisaccharide and pentasaccharide products, respectively. The purity of the oligosaccharides obtained was confirmed by analytical SAX-HPLC, and capillary electrophoresis (CE). The molecular mass and degree of sulfation of the eight purified oligosaccharides were elucidated using electrospray ionization (ESI) mass spectrometry and their structures were established with high field nuclear magnetic resonance (NMR) spectroscopy. These DS-oligosaccharides are currently being used to study for interaction of the DS with biologically important proteins.  相似文献   

11.
The structures of the sugar chains present in two human monoclonal IgM molecules purified from the serum of a patient with Waldenstr?m's macroglobulinemia have been determined. The asparagine-linked sugar chains were liberated as oligosaccharides by hydrazinolysis and labeled by reduction with NaB3H4 after N-acetylation. Their structures were studied by serial lectin column chromatography and sequential exoglycosidase digestion in combination with methylation analysis. These two IgM's were shown to contain almost the same sugar chains. The sugar chains were a mixture of a series of high-mannose-type and biantennary complex-type oligosaccharides. The complex-type oligosaccharides contain Man alpha 1----6(+/- GlcNAc beta 1----4)(Man alpha 1----3)Man beta 1----4GlcNAc beta 1----4(Fuc alpha 1----6)GlcNAc as their core and GlcNAc beta 1----, Gal beta 1----4GlcNAc beta 1---- and Neu5Ac alpha 2----6Gal beta 1----4GlcNAc beta 1---- groups in their outer chain moieties.  相似文献   

12.
Periodate-oxidized/borohydride-reduced 2-O-desulfated heparin (OR2DSH) was prepared using intact heparin from pig intestine as the starting material. Successive treatments of the heparin by oxidation with sodium periodate and reduction with sodium borohydride yielded periodate-oxidized/borohydride-reduced heparin (OR-heparin). Subsequent 2-O-desulfation of OR-heparin, according to a previously established method, yielded OR2DSH. Digestion of OR2DSH with heparitinases generated unsaturated disaccharides, comprising 86.5% DeltaDiHS-(6,N)S (DeltaUA1-->4GlcNS(6S)) and 13.5% DeltaDiHS-NS (DeltaUA1-->4GlcNS), as well as undigested oligosaccharides in which uronate moieties were derivatized by the cleavage of the covalent bond between the C-2 and C-3 positions by periodate-oxidation. The molecular mass of OR2DSH was determined to be 11 kDa, which is almost the same as those of other heparin derivatives such as 2-O-desulfated heparin (2DSH), 6-O-desulfated heparin (6DSH) and N-desulfated N-reacetylated heparin (NDSNAc-heparin). The ability of OR2DSH to enhance neurite outgrowth-promoting activity was evaluated using the explant culture of neocortical tissue from rat embryo in which endogenous heparan sulfate at the cell surface lost substantial numbers of sulfate groups by the action of 40 micro M sodium chlorate. The maximum activity of OR2DSH (29.7%) was achieved at 10 micro g/ml, and those of OR-heparin (21.7%), 2DSH (18.7%) and intact heparin (16.3%) were 100 micro g/ml, whereas that of NDSNAc-heparin (16.5%) was 1,000 micro g/ml. Completely 6-O-desulfated heparin (100:6DSH) exhibited very weak activity (3.3%) at 1,000 micro g/ml. These results suggest that the potency of OR2DSH to enhance neurite outgrowth-promoting activity is exerted synergetically by two different components in OR2DSH, i.e., the IdoA alpha1-->4GlcNS(6S) unit, which contains 6-O- and 2-N-sulfate groups, and the uronate moiety in which the covalent bond between C-2 and C-3 is cleaved, although the mode of action remains to be clarified.  相似文献   

13.
The thermotropic phase behavior of four members of the homologous series of dl-methyl anteisobranched phosphatidylcholines was investigated by Fourier transform infrared spectroscopy. The odd-numbered phosphatidylcholines exhibit spectral changes in two distinct temperature ranges, while their even-numbered counterparts exhibit spectral changes within only a single temperature range. The high-temperature transition observed in the odd-numbered phosphatidylcholines and the single thermotropic event characteristic of the phase behavior of their even-numbered counterparts are both identified as gel/liquid-crystalline phase transitions. The low-temperature event exhibited only by the odd-numbered phospholipids is identified as a gel/gel phase transition that involves changes in the packing mode of the acyl chain methylene groups, as well as changes in the conformation of the glycerol ester interface. These infrared spectroscopic data thus suggest that at low temperatures the odd-numbered methyl anteisobranched phosphatidylcholines form a highly ordered condensed phase similar to the Lc phases of the linear saturated n-acyl-phosphatidylcholines. A comparable condensed phase was not formed by the even-numbered anteisobranched phosphatidylcholines under similar conditions. The properties of the gel states of the even-numbered anteisoacylphosphatidylcholines were generally similar to those of the high-temperature gel states of their odd-numbered counterparts. Those gel states exhibit spectral characteristics indicative of hexagonally packed but relatively mobile acyl chains. The temperature-dependent changes in the spectral characteristics of these gel states were continuous and were not resolved into the discrete but overlapping transitions observed by differential scanning calorimetry.  相似文献   

14.
A mixture of oligosaccharides was isolated from mannosidosis urine by a rapid and convenient procedure employing adsorption on activated charcoal. The mixture was partially fractionated into a homologous series of compounds by a rapid procedure employing a preparative, liquid chromatograph, and a more complete separation was obtained by a second chromatographic step employing a solid phase having more-powerful resolving properties, or by preparative-layer chromatography. The series of oligosaccharides was completely separated by 7-MPa, liquid chromatography (l.c.) on a Micropak NH2-10 column; the analysis could be performed with isocratic or gradient solvent-systems, and did not involve derivatization. With the isocratic system, a strict relationship was observed between retention time and the number of d-mannosyl residues. The use of 1,4-diaminobutane as a column “restorer” was evaluated.  相似文献   

15.
Highly purified noradrenergic, large, dense-cored vesicles were isolated from bovine sympathetic nerve endings by sucrose-D2O density gradient centrifugation. Their concentration of glycoprotein hexosamine and sialic acid was 6.6 and 3.9 mumol/100 mg lipid-free dry weight, respectively, values which are similar to those previously found in bovine chromaffin granules. However, whereas chromaffin granule glycoproteins are characterized by their high proportion of N-acetylgalactosamine-containing O-glycosidically-linked oligosaccharides (present in the chromogranins), such oligosaccharides accounted for only 17% of those in noradrenergic synaptic vesicle glycoproteins. Fractionation of N-3H-acetylated glycopeptides by sequential lectin affinity chromatography demonstrated that approximately two-thirds of the oligosaccharides were of the tri- and tetraantennary complex type, accompanied by 14% biantennary oligosaccharides and 3% high-mannose oligosaccharides. The vesicles had a relatively low concentration of chondroitin sulfate (less than 5% of that in chromaffin granules) but significant amounts of heparan sulfate (0.4 mumol N-acetylglucosamine/100 mg lipid-free dry weight). No hyaluronic acid was detected. The concentration of ganglioside sialic acid in the noradrenergic vesicles was approximately 1 mumol/100 mg lipid-free dry weight, which is significantly higher than that of a crude membrane mixture from which the vesicles were prepared; the ratio of N-acetyl- to N-glycolylneuraminic acid was 0.8. Several molecular species of gangliosides were detected by thin-layer chromatography, but most of these did not exactly comigrate with bovine brain gangliosides. Cholera toxin binding indicated that approximately half or less of the gangliosides belong to the gangliotetraose series.  相似文献   

16.
The structures of the N-linked oligosaccharides of miraculin, which is a taste modifying glycoprotein isolated from miracle fruits, berries of Richadella dulcifica, are reported. Asparagine-linked oligosaccharides were released from the protein by glycopeptidase (almond) digestion. The reducing ends of the oligosaccharide chains thus obtained were aminated with a fluorescent reagent, 2-aminopyridine, and the mixture of pyridylamino derivatives of the oligosaccharides was separated by high performance liquid chromatography (HPLC) on an ODS-silica column. More than five kinds of oligosaccharide fractions were separated by the one chromatographic run. The structure of each oligosaccharide thus isolated was analyzed by a combination of sequential exoglycosidase digestion and another kind of HPLC with an amidesilica column. Furthermore, high resolution proton nuclear magnetic resonance (1H NMR) measurements were carried out. It was found that 1) five oligosaccharides obtained are a series of compounds with xylose-containing common structural core, Xyl beta 1----2 (Man alpha 1----6) Man beta 1----4-GlcNAc beta 1----4 (Fuca1----3)GlcNAc, 2) a variety of oligosaccharide structures are significant for two glycosylation sites, Asn-42 and Asn-186, and 3) two new oligosaccharides, B and D, with unusual structures containing monoantennary complex-type were characterized. (formula; see text)  相似文献   

17.
A complex mixture of diverse oligosaccharides related to the carbohydrates in glycoconjugates involved in various biological events is found in animal milk/colostrum and has been challenging targets for separation and structural studies. In the current study, we isolated oligosaccharides having high molecular masses (MW ∼ 3800) from the milk samples of bearded and hooded seals and analyzed their structures by off-line normal-phase-high-performance liquid chromatography-matrix-assisted laser desorption/ionization-time-of-flight (NP-HPLC-MALDI-TOF) mass spectrometry (MS) by combination with sequential exoglycosidase digestion. Initially, a mixture of oligosaccharides from the seal milk was reductively aminated with 2-aminobenzoic acid and analyzed by a combination of HPLC and MALDI-TOF MS. From MS data, these oligosaccharides contained different numbers of lactosamine units attached to the nonreducing lactose (Galβ1-4Glc) and fucose residue. The isolated oligosaccharides were sequentially digested with exoglycosidases and characterized by MALDI-TOF MS. The data revealed that oligosaccharides from both seal species were composed from lacto-N-neohexaose (LNnH, Galβ1-4GlcNAcβ1-6[Galβ1-4GlcNAcβ1-3]Galβ1-4Glc) as the common core structure, and most of them contained Fucα1-2 residues at the nonreducing ends. Furthermore, the oligosaccharides from both samples contained multibranched oligosaccharides having two Galβ1-4GlcNAc (N-acetyllactosamine, LacNAc) residues on the Galβ1-4GlcNAcβ1-3 branch or both branches of LNnH. Elongation of the chains was observed at 3-OH positions of Gal residues, but most of the internal Gal residues were also substituted with an N-acetyllactosamine at the 6-OH position.  相似文献   

18.
Yanagida K  Natsuka S  Hase S 《Glycobiology》2006,16(4):294-304
It is thought that free oligosaccharides in the cytosol are an outcome of quality control of glycoproteins by endoplasmic reticulum-associated degradation (ERAD). Although considerable amounts of free oligosaccharides accumulate in the cytosol, where they presumably have some function, detailed analyses of their structures have not yet been carried out. We isolated 21 oligosaccharides from the cytosolic fraction of HepG2 cells and analyzed their structures by the two-dimensional high-performance liquid chromatography (HPLC) sugar-mapping method. Sixteen novel oligosaccharides were identified in the cytosol in this study. All had a single N-acetylglucosamine at their reducing-end cores and could be expressed as (Man)n (GlcNAc)1. No free oligosaccharide with N,N'-diacetylchitobiose was detected in the cytosolic fraction of HepG2 cells. This suggested that endo-beta-N-acetylglucosaminidase was a key enzyme in the production of cytosolic free oligosaccharides. The 21 oligosaccharides were classified into three series--series 1: oligosaccharides processed from Manalpha1-2Manalpha1-6 (Manalpha1-2Manalpha1-3)Manalpha1-6(Manalpha1-2Manalpha1-2Manalpha1-3) Manbeta1-4GlcNAc (M9A') and Manalpha1-2Manalpha1-6(Manalpha1-3) Manalpha1-6(Manalpha1-2Manalpha1-2Manalpha1-3)Manbeta1-4GlcNAc (M8A') by digestion with cytosolic alpha-mannosidase; series 2: oligosaccharides processed with Golgi alpha-mannosidases in addition to endoplasmic reticulum (ER) and cytosolic alpha-mannosidases; and series 3: glucosylated oligosaccharides produced from Glc1Man9GlcNAc1 by hydrolysis with cytosolic alpha-mannosidase. The presence of the series "2" oligosaccharides suggests that some of the misfolded glycoproteins had been processed in pre-cis-Golgi vesicles and/or the Golgi apparatus. When the cells were treated with swainsonine to inhibit cytosolic alpha-mannosidase, the amounts of M9A' and M8A' increased remarkably, suggesting that these oligosaccharides were translocated into the cytosol. Four oligosaccharides of series "2" also increased. In contrast, there were obvious reductions in Manalpha1-6(Manalpha1-2Manalpha1-2Manalpha1-3)Manbeta1-4GlcNAc (M5B'), the end product from M9A' by digestion with cytosolic alpha-mannosidase, and Manalpha1-6(Manalpha1- 2Manalpha1-3)Manbeta1-4GlcNAc, derived from series "2" oligosaccharides by digestion with cytosolic alpha-mannosidase. Our data suggest that (1) some of the cytosolic oligosaccharides had been processed with Golgi alpha-mannosidases, (2) the major oligosaccharides translocated from the ER were M9A' and M8A', and (3) M5B' and Glc1M5B' were maintained at relatively high concentrations in the cytosol.  相似文献   

19.
Volpi N  Maccari F 《Biomacromolecules》2005,6(6):3174-3180
In this paper, glycosaminoglycans from the body of the large freshwater mollusc bivalve Anodonta anodonta were recovered at about 0.6 mg/g of dry tissue, composed of chondroitin sulfate (approximately 38%), nonsulfated chondroitin (about 21%), and heparin (41%). This last polysaccharide was found to consist of a large percentage (approximately 88%) of a fast-moving species possessing a lower molecular mass and sulfate group amount and about 12% of a more sulfated, slow-moving component having a greater molecular mass. The chondroitin sulfate was composed of approximately 28% of the 6-sulfated disaccharide, 46% of the 4-sulfated disaccharide, and about 26% of the nonsulfated disaccharide, with a charge density value of 0.74. Heparin was subjected to the oligosaccharide mapping after treatment with heparinase and then separation of the resulting unsaturated oligosaccharides by SAX-HPLC. A heparin sample from Anodonta anodonta showed a degree of sulfation similar to that of bovine mucosal heparin because of the presence of approximately the same mol % of the trisulfated disaccharide (DeltaUA2S(1-->4)-alpha-D-GlcN2S6S), a slight modification of the other oligosaccharides, and a significant increase of the disaccharide bearing the sulfate group in position 3 of the N-sulfoglucosamine 6-sulfate (-->4)-beta-D-GlcA(1-->4)-alpha-D-GlcN2S3S6S(1-->) part of the ATIII-binding region. However, the anticoagulant activity of mollusc heparin was quite similar to that of pharmaceutical grade heparin. The data obtained again emphasize the heterogeneity of GAGs from molluscs.  相似文献   

20.
A study of the biogeochemistry of organic matter in Lake Geneva at a central station (SHL2), was carried out at key periods of the biological cycles from November 1985 to September 1986. The seasonal variability of particulate hydrocarbons was studied in the epilimnion and the hypolimnion, focusing on specific periods such as high phytoplankton productivity and rising herbivorous zooplankton activity (May 1986), clearness of waters (June 1986) and intense mixing of waters (February 1986).Analysis of non-aromatic hydrocarbons (NAH) indicated that their major source is the autochtonous phytoplankton. Year 1986 was characterized by a spring bloom of nanoplankton (chlorophyceae and cryptophyceae) which remained predominant during summer and fall. These biological events were correlated with an increase of biogenic NAH, particulary n-alkane and alkene concentrations; the latter increased by one order of magnitude in May. n-Alkane distributions maximized at n-C17 or n-C29, and the n-C17/n-C29 ratio varied in surface water from 2.8 in May to 0.06 in November of the preceding year, reflecting phytoplankton dominant species. Values of NAH/POC, n-alkanes/POC, alkenes/POC and pristane/phytane ratios underwent seasonal and vertical variations which could be related to grazing and/or settling of particles. NAH, n-alkane and alkene enrichment in hypolimnion particles was interpreted to be a result of zooplankton migrations.A series of 37 monoenes and polyenes having from 15 to 31 carbon atoms, originating from planktonic sources, were recognized in the particulate matter by gas chromatography/mass spectrometry (GC/MS). Their distribution was described in 3 sized particles (> 200 µm, 200-60 µm and < 60 µm, identified as adult zooplankton, young zooplankton and nanoplankton respectively) at two different periods of the biological cycle, May and June 1986. Low level inputs originating from terrestrial higher plants were evident in particles; the value of the Carbon Preference Index (CPI) in the carbon range 23–35 was less than 2.8.In all samples analyzed by GC, an unresolved complex mixture of hydrocarbons (UCM) was present and was interpreted, at least in May, as partly originating from the degradation of organic matter by microorganisms. Typical anthropogenic PAH, such as benzofluoranthene and dibenzo (a) anthracene, were found at a low level (9 and 3 ng l–1 respectively). The absence of hopane-type hydrocarbons, except in November 1985 and in September 1986, and typical combustion PAH associated with particles indicated high temperature pyrolytic contaminants rather than petroleum-derived compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号