首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Summary Receptor cell axons from the antennal flagellum terminate in the glomeruli of the ipsilateral deutocerebrum in Periplaneta americana and Locusta migratoria. Processes from several groups of deutocerebral neurons also enter the glomeruli and terminate in characteristic branching patterns. There, they contact the antennal axons. Connections are both convergent and divergent. Not only do single central neurons collect the inputs from many receptor cells, but receptor axons were often observed to branch and terminate at more than one deutocerebral neuron. The axons from a portion of the neurons go to form the deutocerebral bundle of the tractus olfactorioglobularis. These axons of the bundle terminate in the ipsilateral calyx of the corpus pedunculatum and in the lateral lobus protocerebri. The processes of the majority of the deutocerebral neurons stay within the deutocerebrum itself and may serve as local interneurons. Part of some antennal fibers terminate in the lobus dorsalis. The lobus glomeratus receives inputs from the maxillary palps and also from processes of deutocerebral neurons.Electron microscopy of synaptic connections and anatomical experiments reveal a complicated pattern of connections between receptor axons and higher order neurons as well as between higher order neurons themselves within the glomeruli.The ratio of the number of antennal fibers to that of relay fibers could easily lead to the interpretation, that the deutocerebrum merely serves as a device for reducing the number of transmission channels. However, coupled with physiological data, anatomical details such as conand divergence of input and interconnections between input channels suggest rather a filtering system and a highly complicated integrative network.  相似文献   

2.
Retrograde and orthograde labeling of neurons projecting to the corpus allatum was performed in locust, grasshopper, cricket, and cockroach species in order to identify brain neurons that may be involved in the regulation of juvenile hormone production. In the acridid grasshopper Gomphocerus rufus L., and the locusts Locusta migratoria (R.&F.) and Schistocerca gregaria Forskal, the corpora allata are innervated by two morphologically distinguishable types of brain neurons. One group of 9–13 neurons (depending on species) with somata in the pars lateralis extend axons via the nervus corporis cardiaci 2 and nervus corporis allati 1 to the ipsilateral corpus allatum, whereas two cells in each pars lateralis have bilateral projections and innervate both glands. No direct connection between the pars intercerebralis and corpus allatum has been found. In contrast, neurons with paired axons innervating both glands are not present in Periplaneta americana (L.) and Gryllus bimaculatus de Geer. Instead, two cells in each pars lateralis project only to the gland contralateral to their somata. Electrophysiological experiments on acridid grasshoppers have confirmed the existence of a direct conduction pathway between the two glands via the paired axons of four cells that have been identified by neuroanatomy. These cells are not spontaneously active under experimental conditions. Ongoing discharges in the left and right nerves are unrelated, suggesting that the corpora allata receive independent neuronal inputs from the brain.  相似文献   

3.
We analyzed the anatomy of two diffuse neurohemal systems for serotonin in the head of the Colorado potato beetle Leptinotarsa decemlineata by means of immunohistochemistry. One system is formed by axons from two bilateral pairs of neurons in the frontal margin of the suboesophageal ganglion that enter the ipsilateral mandibular nerve, emerge from this nerve at some distance from the suboesophageal ganglion, and cover all branches of the mandibular nerve with a dense plexus of immunoreactive axon swellings. The other system is formed by axons from two large neurons in the frontal ganglion that enter the ipsilateral frontal connectives, emerge from these connectives, and form a network of axon swellings on the labroforntal, pharyngeal, and antennal nerves and on the surface of the frontal ganglion. Immunohistochemical electron microscopy demonstrated that the axon swellings are located outside the neural sheaths of the nerves and hence in close contact with the hemolymph. We therefore suggest that these plexuses represent extensive neurohemal systems for serotonin. Most immunoreactive terminals are in direct contact with the hemolymph, and other terminals are closely associated with the muscles of the mandibles, labrum, and anterior pharynx, as well as with the salivary glands, indicating that these organs are under serotoninergic control.  相似文献   

4.
Summary In the American cockroach, Periplaneta americana, and the Australian field cricket, Teleogryllus commodus, the two nerves supplying the bases of the cerci are joined by a branch that crosses behind the last abdominal ganglion. This commissural ring nerve is restricted to females, and it contains many axons filled with granular and agranular vesicles. The axons stem from somata located within the ganglion. There are one (Periplaneta) or two (Teleogryllus) groups of median neurons with bilaterally symmetrical bifurcations, and a group of postero-ventral neurons on each side. In T. commodus, these neurons are distinct from others associated with the cerci. In the two species, the ring nerve neurons contribute to a neuropile near the root of each cereal nerve. The bifurcating median neurons arborize on both sides before entering the ring nerve, while the postero-ventral ones branch more extensively ipsilateral to their somata. The possibilities are discussed that the bifurcating neurons may be homologous to dorsal unpaired median neurons, and that the ring nerve may be a neurohemal area.  相似文献   

5.
Summary Retinal bundles, connecting the retina of the octopus to the ipsilateral optic lobe, contain both retinal photoreceptor axons that terminate in the optic lobe and centrifugal axons whose cell bodies lie within the lobe. Staining axonal elements in proximal stubs of individual retinal bundles by cobalt diffusion and subsequent sulphide treatment reveals the topographic relationship between afferent terminals and centrifugal cell bodies. At the outer border of the plexiform layer, stained terminal bags (photoreceptor axon enlargements), an indicator of photoreceptor terminal spread within this layer, overlap stained centrifugal cell bodies located within the inner granule layer. The details of this overlap indicate a dorsoventral representation of each retinal bundle within the optic lobe cortex.  相似文献   

6.
Summary The temperature-sensitive mutation shibire (shi) in Drosophila melanogaster is thought to disrupt membrane recycling processes, including endocytotic vesicle pinch-off. This mutation can perturb the development of nerves and muscles of the adult escape response. After exposure to a heat pulse (6 h at 30° C) at 20 h of pupal development, adults have abnormal flight muscles. Wing depressor muscles (DLM) are reduced in number from the normal six to one or two fibers, and are composed of enlarged fibers that appear to represent fiber fusion; large spaces devoid of muscle fibers suggested fiber deletion. The normal five motor axons are present in the peripheral nerve PDMN near the ganglion. However, while some motor axons pass dorsally to the extant fibers, other motor axons lacking end targets pass into an abnormal posterior branch and terminate in a neuroma, i.e., a tangle of axons and glia without muscle target tissue. Hemisynapses are common in axons of the proximal PDMN and within the neuroma, but they are rarely seen in control (no heat pulse) shi or wild-type flies. All surviving muscle fibers are innervated; no muscle tissue exists without innervation. Fibrillar fine structure and neuromuscular synapses appear normal. Fused fibers have dual innervation, suggesting correct and specific matching of target tissue and motor axons. Motor axons lacking target fibers do not innervate erroneous targets but instead terminate in the neuroma. These results suggest developmental constraints and rules, which may contribute to the orderly, stereotyped development in the normal flight system. The nature of the anomalies inducible in the flight motor system in shi flies implies that membrane recycling events at about 20 h of pupal development are critical to the formation of the normal adult nerve-muscle pattern for DLM flight muscles.  相似文献   

7.
Summary In spiders the bulk of the central nervous system (CNS) consists of fused segmental ganglia traversed by longitudinal tracts, which have precise relationships with sensory neuropils and which contain the fibers of large plurisegmental interneurons. The responses of these interneurons to various mechanical stimuli were studied electrophysiologically, and their unilateral or bilateral structure was revealed by intracellular staining. Unilateral interneurons visit all the neuromeres on one side of the CNS. They receive mechanosensory input either from a single leg or from all ipsilateral legs via sensory neurons that invade leg neuromeres and project into specific longitudinal tracts. The anatomical organization of unilateral interneurons suggests that their axons impart their information to all ipsilateral leg neuromeres. Bilateral interneurons are of two kinds, symmetric and asymmetric neurons. The latter respond to stimulation of all legs on one side of the body, having their dendrites amongst sensory tracts of the same side of the CNS. Anatomical evidence suggests that their terminals invade all four contralateral leg neuromeres. Bilaterally symmetrical plurisegmental interneurons have dendritic arborizations in both halves of the fused ventral ganglia. They respond to the stimulation of any of the 8 legs. A third class of cells, the ascending neurons have unilateral or bilateral dendritic arborizations in the fused ventral ganglia and show blebbed axons in postero-ventral regions of the brain. Their response characteristics are similar to those of other plurisegmental interneurons. Descending neurons have opposite structural polarity, arising in the brain and terminating in segmental regions of the fused ventral ganglia. Descending neurons show strong responses to visual stimulation. Approximately 50% of all the recorded neurons respond exclusively to stimulation of a single type of mechanoreceptor (either tactile hairs, or trichobothria, or slit sensilla), while the rest respond to stimulation of a variety of sensilla. However, these functional differences are not obviously reflected by the anatomy. The functional significance of plurisegmental interneurons is discussed with respect to sensory convergence and the coordination of motor output to the legs. A comparison between the response properties of certain plurisegmental interneurons and their parent longitudinal tracts suggests that the tracts themselves do not reflect a modality-specific organization.Abbreviations BPI bilateral plurisegmental interneuron - CNS central nervous system - FVG fused ventral ganglia - LT longitudinal tract - PI plurisegmental interneuron - PSTH peristimulus timehistogram - UPI unilateral plurisegmental interneuron  相似文献   

8.
The central projections of trichoid hairs and of some scolopidial organs of the mesothoracic leg of the locust Schistocerca gregaria were studied by using nickel chloride backfilling and single cell recording. Trichoid hair sensilla on different parts of the legs project somatotopically in the ventral part of the ipsilateral neuropile of the mesothoracic ganglion. Generally, distally located receptors have their terminal arborizations in ventro-lateral areas of the neuropile, and proximally located receptors in ventro-medial areas. The axons of the subgenual organ and tarsal chordotonal organs project into the intermediate neuropile.  相似文献   

9.
The development of nervous system (NS) in the non-feeding vestibula larva of the sea urchin, Holopneustes purpurescens, and the feeding echinopluteus larva of Hemicentrotus pulcherrimus was examined by focusing on fate during metamorphosis. In H. purpurescens, the serotonergic NS (SerNS) appeared simultaneously and independently in larval tissue and adult rudiment, respectively, from 3-day post-fertilization. In 4-day vestibulae, an expansive aboral ganglion (450 × 100 μm) was present in the larval mid region that extended axons toward the oral ectoderm. These axons diverged near the base of the primary podia. An axonal bundle connected with the primary podia and the rim of vestopore on the oral side. Thus, the SerNS of the larva innervated the rudiment at early stage of development of the primary podia. This innervation was short-lived, and immediately before metamorphosis, it disappeared from the larval and adult tissue domains, whereas non-SerNS marked by synaptotagmin remained. The NS of 1-month post-fertilization plutei of H. pulcherrimus comprised an apical ganglion (50 × 17 μm) and axons that extended to the ciliary bands and the adult rudiment (AR). A major basal nerve of serotonergic and non-serotonergic axons and a minor non-serotonergic nerve comprised the ciliary band nerve. In 3-month plutei, axonal connection among the primary podia in the neural folds completed. The SerNS never developed in the AR. Thus, there was distinctive difference between feeding- and non-feeding larvae of the above sea urchins with respect to SerNS and the AR.  相似文献   

10.
Summary Reactive LRH neurons were characterized in prosimians (Tupaia and Galago) by immunofluorescence using rabbit immunesera against unconjugated synthetic LRH, or LRH conjugated with bovine serum albumin. These neurons, which vary individually in number in one species, are mainly concentrated in the rostral hypothalamus (medial preoptic area and anterior hypothalamic area) and in the lamina terminalis. In contrast to the simians and man, immunoreactive perikarya were not routinely found in the mediobasal hypothalamus of the prosimians investigated in the present study. Reactive axons of the hypothalamo-hypophyseal tract are more numerous and conspicuous in the retrochiasmatic area and in the postinfundibular eminence. They give rise to radiating collaterals ending mainly around the capillaries of the primary portal plexus of the median eminence and of the infundibular stem (where they are generally more numerous). Reactive axons of the preopticoterminal tract, originating from the perikarya of the lamina terminalis, end around the capillaries of the vascular organ or below and between the ependymal cells lining its ventricular side.In Galago a small but very distinct tract of reactive axons runs under the optic chiasma, between the lamina terminalis and the ventral labium of the infundibulum. Very fine reactive extrahypothalamic axons were observed in the posterior part of the habenular ganglia, along the preamygdaloid portion of the stria terminalis and along the blood vessels of the parolfactory area.This work was supported by a grant from the Foundation pour la Recherche Médicale Française. The author acknowledges the help of Miss D. Croix for the preparation of LRH-BSA conjugates and the radioimmunological study of the immunosera and A. Pillez (C.N.R.S.) for sectioning and staining the genital tracts  相似文献   

11.
Summary The peripheral nervous system of embryos homozygous for prd, ftz, en and bxd was examined for defects and transformations in the segment-specific pattern of sensilla and peripheral nerves. This analysis permitted me to assign a distinct subset of sensilla to any of the three genetically and morphologically defined compartments s, a and p of each segment. In the wild-type embryonic segments, sensory axons deriving from sensilla of different compartments form a part of the common peripheral nerves. In the composite segments of prd and ftz mutant embryos, subsets of sensilla of two neighbouring segments are combined. Nevertheless, the axons of sensilla of different segmental identity are able to fasciculate and to form afferent nerves, which connect in an apparently normal fashion to the central nervous system. It is concluded that in the Drosophila embryo compartmental and segmental identity of sensory organs has no influence on the trajectories of sensory axons.  相似文献   

12.
Summary An antiserum against the cockroach neuropeptide leucokinin I (LKI) was used to study peptidergic neurons and their innervation patterns in larvae and adults of three species of higher dipteran insects, the flies Drosophila melanogaster, Calliphora vomitoria, and Phormia terraenovae, as well as larvae of a primitive dipteran insect, the crane fly Phalacrocera replicata. In the larvae of the higher dipteran flies, the antiserum revealed three pairs of cells in the brain, three pairs of ventro-medial cells in the subesophageal ganglion, and seven pairs of ventro-lateral cells in the abdominal ganglia. Each of these 14 abdominal leucokinin-immunoreactive (LKIR) neurons innervates a single muscle of the abdominal body wall (muscle 8), which is known to degenerate shortly after adult emergence. Conventional electron microscopy demonstrates that this muscle is innervated by at least one axon containing clear vesicles and two axons containing dense-cored vesicles. Electronmicroscopical immunocytochemistry shows that the LKIR axon is one of these two axons with dense-cored vesicles and that it forms terminals on the sarcolemma of its target muscle. The abdominal LKIR neurons appear to survive metamorphosis. In the adult fly, the efferent abdominal LKIR neurons innervate the spiracles, the heart, and neurohemal regions of the abdominal wall. In the crane fly larva, dorso-medial and ventrolateral LKIR cell bodies are located in both thoracic and abdominal ganglia of the ventral nerve cord. As in the larvae of the other flies, the abdominal ventrolateral LKIR neurons form efferent axons. However, in the crane fly larva there are two pairs of efferent LKIR neurons in each of the abdominal ganglia and their peripheral targets include neurohemal regions of the dorsal transverse nerves. An additional difference is that in the crane fly, a caudal pair of LKIR axons originating from the penultimate pair of dorso-median LKIR cells in the terminal ganglion innervate the hindgut.  相似文献   

13.
Summary In the crab, Leptograpsus variegatus, the projection of retinula cell axons to the lamina was investigated by tracing them through a series of semi-thin sections. Forty-four such axons were traced from a single group of ommatidia as far as the distal layers of the lamina. The eight receptor axons of one ommatidium project to a single lamina cartridge. Therefore, because the crab has a fused rhabdom, angular information is conserved in vision, and the outside world is projected literally onto the lamina, just as it is in the standard non-dipteran pattern of insects. The belief of previous workers that other decapod eyes show neural superposition was an inference based primarily on the patterns of penetration of the basement membrane by receptor axons, and on degeneration experiments. This evidence is reviewed, shown to be inadequate and discussed in the light of the projection now demonstrated for Leptograpsus.  相似文献   

14.
Summary The indirect immunofluorescence technique was used to determine the distribution of vasoactive intestinal polypeptide-immunoreactive and somatostatin-immunoreactive axons in the pulmonary vasculature of the aquatic file snake Acrochordus granulatus. A dense distribution of vasoactive intestinal polypeptide-immunoreactive axons was found on the common pulmonary artery, the anterior and posterior pulmonary arteries, and the smaller arteries branching to the lung. The density of these axons appeared greater in arterial preparations taken from more distal regions of the lung. The densest distribution of vasoactive intestinal polypeptide-immunoreactive axons was observed on the larger pulmonary veins in all regions of the lung. These axons were observed on the larger veins within the lung parenchyma but not on the smaller veins. Axons and cell bodies were observed in the vagal nerve trunks which run parallel to the pulmonary arteries and veins. In contrast, no somatostatin-immunoreactive axons were observed in any region of the pulmonary vasculature. It is proposed that the perivascular plexus of vasoactive intestinal polypeptide-immunoreactive axons may represent part or all of the vagal postganglionic innervation of the pulmonary vasculature.  相似文献   

15.
Summary The immunocytochemical localization of several substances with putative neurotransmitter or modulator properties was investigated in the retinae of three urodele species. Gamma-aminobutyric acid-like immunoreactive labelling appeared in different types of amacrine and horizontal cells. In addition, labelled fibres in the optic nerve were detected. It was not possible to determine whether these fibres were ganglion-cell axons or part of an efferent projection. Endogenous serotonin was found in several populations of amacrine cells including stratified and diffuse types. Glucagon-like immunoreactivity appeared in one bistratified amacrine cell type, and neurotensin-like immunoreactivity was detected in a single monostratified amacrine cell type. Metenkephalin-like-immunoreactive labelling was rare but found in several sublaminae of the inner plexiform layer. Thus each peptide-like-immunoreactive cell type makes up a distinct and unique population of cells and probably has a special functional role in retinal processing. There are striking similarities in the peptide-like immunoreactive patterns of Triturus alpestris and Necturus maculosus whereas in Ambystomatidae the peptide-like-immunoreactive systems appear to be differently organized. This supports the hypothesis that Salamandridae and Proteidae are more closely related to each other than to the Ambystomatidae.Abbreviations GABA gamma-aminobutyric acid - GCL ganglion cell layer - Glu glucagon - HRP horseradish peroxidase - INL inner nuclear layer - IPL inner plexiform layer - IR immunoreactive or immunoreactivity - M-enk metenkephalin - Neu neurotensin - OFL optic fibre layer - ONL outer nuclear layer - OPL outer plexiform layer - Ser serotonin This work forms part of the doctoral thesis of Gaby Gläsener, Faculty of Biology, Technical University of Darmstadt, Federal Republic of Germany. Supported by a research grant from the Deutsche Forschungsgemeinschaft (Hi 306/1-1)  相似文献   

16.
Summary Horseradish peroxidase was injected unilaterally into the optic tectum of the channel catfish, Ictalurus punctatus. The sources of tectal afferents were thereby revealed by retrogradely labeled neurons in various brain centers. Retrogradely labeled cells were seen in both the ipsilateral and contralateral telencephalon. The superficial pretectal area was labeled on both sides of the brain. Ipsilateral projections were also observed coming from the entopeduncular nucleus. Both the anterior thalamic nucleus and the ventro-medial thalamic nucleus projected to the ipsilateral optic tectum. Cells in the ipsilateral nucleus of the posterior commissure were seen to project to the tectum. Labeled fibers were visualized in the lateral geniculate nucleus ipsilateral to the injected tectum, however, no labeled cell bodies were observed. Therefore, tectal cells project to the lateral geniculate nucleus, but this projection is not reciprocal. No labeled cells were found in the cerebellum. Labeled cells occurred in both the ipsilateral and contralateral medial reticular formation; they were also observed in the ipsilateral nucleus isthmi. A projection was seen coming from the dorsal funicular nucleus. Furthermore, labeled cells were shown in the inferior raphe nucleus.Abbreviations AP Area pretectalis - C Cerebellum - DPTN Dorsal posterior tegmental nucleus - H Habenula - IRF Inferior reticular formation - LI Inferior lobe - LGN Lateral geniculate nucleus - LR Lateral recess - MB Mammillary body - MRF Medial reticular formation - MZ Medial zone of the telencephalon - NC Nucleus corticalis - NDL-M Nucleus opticus dorsolateralis/pars medialis - NI Nucleus isthmi - NPC Nucleus of the posterior commissure - OPT Optic tectum - OT Optic tract - PC Posterior commissure - PN Pineal organ - PrOP Preoptic nucleus - PT Pretectum - TBt Tectobulbar tract - TEL Telencephalon - TL Torus longitudinalis - TS Torus semicircularis - VC Valvula cerebelli - VLTN Ventrolateral thalamic nucleus - VMTN Ventromedial thalamic nucleus  相似文献   

17.
Summary By use of an antiserum raised against the Nterminal sequence pGlu-Leu-Asn-Phe..., common to red pigment-concentrating hormone (RPCH) of Pandalus borealis and three structurally similar insect neuropeptides, putative RPCH-immunopositive structures were revealed in the eyestalks of Carcinus maenas and Orconectes limosus and in the brain and thoracic ganglion (TG) of C. maenas. In the eyestalks, complete neurosecretory pathways were demonstrated, consisting of perikarya, axons and terminals in the neurohemal organ, the sinus gland (SG). In C. maenas approximately 20 small RPCH cells are present as a distinct group adjacent to the medulla terminalis ganglionic X-organ (MTGXO, XO). They are morphologically different from the larger XO perikarya, which contain the crustacean hyperglycemic hormone (CHH). The occurrence of both neuropeptides in distinct neurosecretory pathways was ascertained by immunologic double staining (PAP/gold) or by analysis of consecutive sections. In addition, a group of two to four larger RPCH cells is located in the proximal part of the MT. In O. limosus, RPCH cells are found in the XO. Cells corresponding to the proximal MT cells of C. maenas were not found. In both species, a few more weakly staining immunopositive perikarya were observed in clusters of cell somata of the optic ganglia. It is uncertain whether these are connected to the SG.In the brain of C. maenas, several smaller and three larger perikarya were consistently observed in the dorsal lateral cell somata adjacent to the olfactory lobes. In the optic nerve, two axons that project into the eyestalk were stained. Some axons were also observed in the ventral median neuropil of the brain. In the TG, RPCH cells were found in small numbers in median positions, i.e., in clusters of somata between the ganglia of the appendages.HPLC analysis of the red pigment-concentrating activity from the SG of C. maenas revealed that the retention time of the neuropeptide is similar but not identical to that of Pandalus borealis RPCH.  相似文献   

18.
Summary The central projections of ocellar interneurones in two species of trichopterous insects Agrypnia varia F. and Limnephilus flavicornis F. were analysed by use of cobalt iontophoresis. The interneurones were classified into three groups: large-, medium- and small-caliber neurones based on the diameters of the axons. Seven large-diameter neurones project from each lateral ocellus into the central nervous system. Of these, four neurones terminate in the posterior slope (three ipsilateral and one contralateral). Three neurones possess branches in the contralateral posterior slope and proceed down the cervical connective into the thoracic ganglia. Medium-sized neurones connect the neuropiles of the three ocelli to each other. Small-diameter neurones contact the contralateral lobula and medulla of the optic lobes and connect the three ocellar neuropiles. Large-diameter neurones of the median ocellus were found to terminate bilaterally or ipsilaterally in the posterior slope. In the posterior slope four different subregions can be recognised: (1) the dorso-lateral, (2) the ventro-lateral, (3) the lateral, into which large-diameter interneurones of the lateral ocelli send branches, and (4) the medial, innervated by interneurones of the median ocellus. Interneurones of the median ocellus send branches into the lateral region as well.  相似文献   

19.
Methanolic brain extracts of Locusta migratoria inhibit in vitro juvenile hormone biosynthesis in both the locust L. migratoria and the cockroach Diploptera punctata. A polyclonal antibody against allatostatin-5 (AST-5) (dipstatin-2) of this cockroach was used to immunolocalize allatostatin-5-like peptides in the central nervous system of the locusts Schistocerca gregaria and L. migratoria and of the fleshfly Neobellieria bullata. In both locust species, immunoreactivity was found in many cells and axons of the brain-retrocerebral complex, the thoracic and the abdominal ganglia. Strongly immunoreactive cells were stained in the pars lateralis of the brain with axons (NCC II and NCA I) extending to and arborizing in the corpus cardiacum and the corpora allata. Although many neurosecretory cells of the pars intercerebralis project into the corpus cardiacum, only 12 of them were immunoreactive and the nervi corporis cardiaci I (NCC I) and fibers in the nervi corporis allati II (NCA II) connecting the corpora allata to the suboesophageal ganglion remained unstained. S. gregaria and L. migratoria seem to have an allatostatin-like neuropeptide present in axons of the NCC II and the NCA I leading to the corpus cardiacum and the corpora allata. All these data suggest that in locusts allatostatin-like neuropeptides might be involved in controlling the production of juvenile hormone by the corpora allata and, perhaps, some aspects of the functioning of the corpus cardiacum as well. However, when tested in a L. migratoria in-vitro juvenile hormone-biosynthesis assay, allatostatin-5 did not yield an inhibitory or stimulatory effect. There is abundant AST-5 immunoreactivity in cell bodies of the fleshfly N. bullata, but none in the CA-CC complexes. Apparently, factors that are immunologically related to AST-5 do occur in locusts and fleshflies but, the active protion of the peptide required to inhibit JH biosynthesis in locusts is probably different from that of AST-5.  相似文献   

20.
We used single sensillum recordings to define male Helicoverpa zea olfactory receptor neuron physiology followed by cobalt staining to trace the axons to destination glomeruli of the antennal lobe. Receptor neurons in type A sensilla that respond to the major pheromone component, (Z)-11-hexadecenal, projected axons to the cumulus of the macroglomerular complex (MGC). In approximately 40% of these sensilla a second receptor neuron was stained that projected consistently to a specific glomerulus residing in a previously unrecognized glomerular complex with six other glomeruli stationed immediately posterior to the MGC. Cobalt staining corroborated by calcium imaging showed that receptor neurons in type C sensilla sensitive to (Z)-9-hexadecenal projected to the dorsomedial posterior glomerulus of the MGC, whereas the co-compartmentalized antagonist-sensitive neurons projected to the dorsomedial anterior glomerulus. We also discovered that the olfactory receptor neurons in type B sensilla exhibit the same axonal projections as those in type C sensilla. Thus, it seems that type B sensilla are anatomically type C with regard to the projection destinations of the two receptor neurons, but physiologically one of the receptor neurons is now unresponsive to everything except (Z)-9-tetradecenal, and the other responds to none of the pheromone-related odorants tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号