首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Bacteria and archaea contain a 2'-5' RNA ligase that seals in vitro 2',3'-cyclic phosphodiester and 5'-hydroxyl RNA termini, generating a 2',5'-phosphodiester bond. In our search for an RNA ligase able to circularize the monomeric linear replication intermediates of viroids belonging to the family Avsunviroidae, which replicate in the chloroplast, we have identified in spinach (Spinacea oleracea L.) chloroplasts a new RNA ligase activity whose properties resemble those of the bacterial and archaeal 2'-5' RNA ligase. The spinach chloroplastic RNA ligase recognizes the 5'-hydroxyl and 2',3'-cyclic phosphodiester termini of Avocado sunblotch viroid and Eggplant latent viroid RNAs produced by hammerhead-mediated self-cleavage, yielding circular products linked through an atypical, most likely 2',5'-phosphodiester, bond. The enzyme neither requires divalent cations as cofactors, nor NTPs as substrate. The reaction apparently reaches equilibrium at a low ratio between the final circular product and the linear initial substrate. Even if its involvement in viroid replication seems unlikely, the identification of a 2'-5' RNA ligase activity in higher plant chloroplasts, with properties very similar to an analogous enzyme widely distributed in bacterial and archaeal proteomes, is intriguing and suggests an important biological role so far unknown.  相似文献   

3.
4.
We characterized the peach latent mosaic viroid (PLMVd) replication intermediates that accumulate in infected peach leaves and determined the tissue and subcellular localization of the RNA species. Using in situ hybridization, we showed that PLMVd strands of both plus and minus polarities concentrate in the cells forming the palisade parenchyma. At the cellular level, PLMVd was found to accumulate predominantly in chloroplasts. Northern blot analyses demonstrated that PLMVd replicates via a symmetric mode involving the accumulation of both circular and linear monomeric strands of both polarities. No multimeric conformer was detected, indicating that both strands self-cleave efficiently via their hammerhead sequences. Dot blot hybridizations revealed that PLMVd strands of both polarities accumulate equally but that the relative concentrations vary by more than 50-fold between peach cultivars. Taken together these results establish two hallmarks for the classification of viroids. Group A viroids (e.g., PLMVd), which possess hammerhead structures, replicate in the chloroplasts via the symmetric mode. By contrast, group B viroids, which share a conserved central region, replicate in the nucleus via an asymmetric mechanism. This is an important difference between self-cleaving and non-self-cleaving viroids, and the implications for the evolutionary origin and replication are discussed.  相似文献   

5.
Following UV irradiation, denaturing polyacrylamide gel electrophoresis and Northern blot hybridization revealed a cross-link in Peach latent mosaic viroid (PLMVd) plus-strand RNA. Primer extension and partial alkaline hydrolysis of the UV-irradiated PLMVd plus-strand RNA resulting from the hammerhead-mediated self-cleavage mapped the cross-link at U81 and at the 3'-terminal C289 (or at a very proximal nucleotide). Supporting this notion, in vitro-synthesized PLMVd plus-strand RNAs with short insertions/deletions at their 3' termini failed to cross-link. Because U81 and C289 are conserved in PLMVd variants and because the initiation site of PLMVd minus-strand RNA maps at a short double-stranded motif containing C289, the UV-photo-cross-linkable element of tertiary structure may be functionally significant. A second cross-linked species similar in size and sequence to the monomeric circular PLMVd form, observed in some PLMVd variants, probably derives from UV-induced ligation of the two termini resulting from self-cleavage.  相似文献   

6.
7.
We report on the formation of novel RNA molecules in a recombination-like, nonenzymatic reaction proceeding in the complex of partially complementary RNA-oligonucleotides under very simple conditions. Analysis of the isolated products demonstrated that at least 5% of the formed linkages are of the (natural) 3',5'-phosphodiester type. We suggest that similar reactions could contribute to the development of the 'RNA world', but could also proceed in vivo within variously structured RNA or RNA complexes containing loops, bulges, or dangling ends, providing an emergence of novel RNA sequences.  相似文献   

8.
9.
Na-montmorillonite prepared from Volclay by the titration method facilitates the self-condensation of ImpA, the 5'-phosphorimidazolide derivative of adenosine. As was shown by AE-HPLC analysis and selective enzymatic hydrolysis of products, oligo(A)s formed in this reaction are 10 monomer units long and contain 67% 3',5'-phosphodiester bonds (Ferris and Ertem, 1992a). Under the same reaction conditions, 5'-phosphorimidazolide derivatives of cytidine, uridine and guanosine also undergo self-condensation producing oligomers containing up to 12-14 monomer units for oligo(C)s to 6 monomer units for oligo(G)s. In oligo(C)s and oligo(U)s, 75-80% of the monomers are linked by 2',5'-phosphodiester bonds. Hexamer and higher oligomers isolated from synthetic oligo(C)s formed by montmorillonite catalysis, which contain both 3',5'- and 2',5'-linkages, serve as catalysts for the non-enzymatic template directed synthesis of oligo(G)s from activated monomer 2-MeImpG, guanosine 5'-phospho-2-methylimidazolide (Ertem and Ferris, 1996). Pentamer and higher oligomers containing exclusively 2',5'-linkages, which were isolated from the synthetic oligo(C)s, also serve as templates and produce oligo(G)s with both 2',5'- and 3',5'-phosphodiester bonds. Kinetic studies on montmorillonite catalyzed elongation rates of oligomers using the computer program SIMFIT demonstrated that the rate constants for the formation of oligo(A)s increased in the order of 2-mer < 3-mer < 4-mer ... < 7-mer (Kawamura and Ferris, 1994). A decameric primer, dA(pdA)8pA bound to montmorillonite was elongated to contain up to 50 monomer units by daily addition of activated monomer ImpA to the reaction mixture (Ferris, Hill and Orgel, 1996). Analysis of dimer fractions formed in the montmorillonite catalyzed reaction of binary and quaternary mixtures of ImpA, ImpC, 2-MeImpG and ImpU suggested that only a limited number of oligomers could have formed on the primitive Earth rather than equal amounts of all possible isomers (Ertem and Ferris, 2000). Formation of phosphodiester bonds between mononucleotides by montmorillonite catalysis is a fascinating discovery, and a significant step forward in efforts to find out how the first RNA-like oligomers might have formed in the course of chemical evolution. However, as has been pointed out in several publications, these systems should be regarded as models rather than a literal representation of prebiotic chemistry (Orgel, 1998; Joyce and Orgel, 1999; Schwartz, 1999).  相似文献   

10.
The peach latent mosaic viroid (PLMVd) is used to study the interactions between a viroid containing hammerhead ribozymes and its natural host, peach. To gain insight into the molecular basis of the phenotypic effects observed upon viroid infection, sequence variants from three PLMVd isolates that differ in symptom expression on the peach indicator GF-305 have been characterized. Analysis of the primary structures of a total of 29 different sequence variants derived from a severe and two latent isolates has revealed a large number of polymorphic positions in the viroid molecule. The variability pattern indicates that preservation of the stability of both hammerhead structures and conservation of a branched secondary structure of the viroid molecule may be factors limiting sequence heterogeneity in PLMVd. Moreover, compensatory mutations in two hairpin loops of the proposed secondary structure, suggesting that a pseudoknot-like interaction may exist between them, have also been observed. Phylogenetic analysis has allowed the allocation of PLMVd molecules into three major groups. This clustering does not strictly correlate with the source isolate from which the variants were obtained, providing insights into the complex mixture of molecules which make up each isolate. Bioassays of individual PLMVd sequence variants on GF-305 peach seedlings have shown that the biological properties of the PLMVd isolates may be correlated with both the complexity of their viroid populations and the presence of specific sequence variants.  相似文献   

11.
A novel type of RNA ligase activity in extracts of wheat germ or Chlamydomonas requires 2', 3'-cyclic phosphate and 5'-phosphate ends for ligation to form a 2'-phosphomonoester, 3',5'-phosphodiester bond. Using 5'-3 2P-labeled linear PSTV, we demonstrate that RNase T1-nicked viroid predominantly forms (formula; see text) U-bonds. Natural linear PSTV, however, forms mainly (formula; see text) A-bonds upon enzymatic circularization. We show that natural linear PSTV RNA has nicks between C181 and A182, or between C348 and A349, and that consequently C181 and C348 carry 2',3'-cyclophosphate termini.  相似文献   

12.
Chemical and enzymatic ligation between the 5'-terminal phosphate of one oligonucleotide and the 3'-terminal 2',3'-cis-diol group of the other oligonucleotide on a complementary template was studied. Carbodiimide, imidazolide and N-hydroxybenzotriazole ester methods were used for chemical activation of the phosphate group, and T4 DNA ligase for enzymatic ligation. All the chemical activation methods produced 3',5'- and 2',5'-phosphodiester bonds (40-45 and 55-60%, resp.), whereas enzymatic ligation gave the product only with 3',5'-phosphodiester bond.  相似文献   

13.
Myxobacteria have been shown to contain a large number of branched RNA-linked single-stranded DNA (multicopy single-stranded DNA (msDNA] molecules. In addition, we found that Myxococcus xanthus contains another smaller msDNA-like molecule, designated mrDNA, consisting of a 65-base single-stranded DNA covalently linked by a 2',5'-phosphodiester linkage to a 49-base branched RNA. In spite of their different primary sequences, the RNA-linked mrDNA is remarkably similar in secondary structure to msDNA, sharing similar stem-loop folding as well as the unique 2',5'-phosphodiester linkage. These results indicate that these novel molecules are synthesized by common molecular mechanisms.  相似文献   

14.
Viroids are small circular single-stranded infectious RNAs characterized by a relatively high mutation level. Knowledge of their sequence heterogeneity remains largely elusive and previous studies, using Sanger sequencing, were based on a limited number of sequences. In an attempt to address sequence heterogeneity from a population dynamics perspective, a GF305-indicator peach tree was infected with a single variant of the Avsunviroidae family member Peach latent mosaic viroid (PLMVd). Six months post-inoculation, full-length circular conformers of PLMVd were isolated and deep-sequenced. We devised an original approach to the bioinformatics refinement of our sequence libraries involving important phenotypic data, based on the systematic analysis of hammerhead self-cleavage activity. Two distinct libraries yielded a total of 3,939 different PLMVd variants. Sequence variants exhibiting up to ∼17% of mutations relative to the inoculated viroid were retrieved, clearly illustrating the high level of divergence dynamics within a unique population. While we initially assumed that most positions of the viroid sequence would mutate, we were surprised to discover that ∼50% of positions remained perfectly conserved, including several small stretches as well as a small motif reminiscent of a GNRA tetraloop which are the result of various selective pressures. Using a hierarchical clustering algorithm, the different variants harvested were subdivided into 7 clusters. We found that most sequences contained an average of 4.6 to 6.4 mutations compared to the variant used to initially inoculate the plant. Interestingly, it was possible to reconstitute and compare the sequence evolution of each of these clusters. In doing so, we identified several key mutations. This study provides a reliable pipeline for the treatment of viroid deep-sequencing. It also sheds new light on the extent of sequence variation that a viroid population can sustain, and which may give rise to a quasispecies.  相似文献   

15.
How viroids, tiny non-protein-coding RNAs (~250-400 nt), incite disease is unclear. One hypothesis is that viroid-derived small RNAs (vd-sRNAs; 21-24 nt) resulting from the host defensive response, via RNA silencing, may target for cleavage cell mRNAs and trigger a signal cascade, eventually leading to symptoms. Peach latent mosaic viroid (PLMVd), a chloroplast-replicating viroid, is particularly appropriate to tackle this question because it induces an albinism (peach calico, PC) strictly associated with variants containing a specific 12-14-nt hairpin insertion. By dissecting albino and green leaf sectors of Prunus persica (peach) seedlings inoculated with PLMVd natural and artificial variants, and cloning their progeny, we have established that the hairpin insertion sequence is involved in PC. Furthermore, using deep sequencing, semi-quantitative RT-PCR and RNA ligase-mediated rapid amplification of cDNA ends (RACE), we have determined that two PLMVd-sRNAs containing the PC-associated insertion (PC-sRNA8a and PC-sRNA8b) target for cleavage the mRNA encoding the chloroplastic heat-shock protein 90 (cHSP90), thus implicating RNA silencing in the modulation of host gene expression by a viroid. Chloroplast malformations previously reported in PC-expressing tissues are consistent with the downregulation of cHSP90, which participates in chloroplast biogenesis and plastid-to-nucleus signal transduction in Arabidopsis. Besides PC-sRNA8a and PC-sRNA8b, both deriving from the less-abundant PLMVd (-) strand, we have identified other PLMVd-sRNAs potentially targeting peach mRNAs. These results also suggest that sRNAs derived from other PLMVd regions may downregulate additional peach genes, ultimately resulting in other symptoms or in a more favorable host environment for viroid infection.  相似文献   

16.
Trans-cleaving hammerheads with discontinuous or extended stem I and with tertiary stabilizing motifs (TSMs) have been tested previously against short RNA substrates in vitro at low Mg(2+) concentration. However, the potential of these ribozymes for targeting longer and structured RNAs in vitro and in vivo has not been examined. Here, we report the in vitro cleavage of short RNAs and of a 464-nt highly structured RNA from potato spindle tuber viroid (PSTVd) by hammerheads with discontinuous and extended formats at submillimolar Mg(2+). Under these conditions, hammerheads derived from eggplant latent viroid and peach latent mosaic viroid (PLMVd) with discontinuous and extended formats, respectively, where the most active. Furthermore, a PLMVd-derived hammerhead with natural TSMs showed activity in vivo against the same long substrate and interfered with systemic PSTVd infection, thus reinforcing the idea that this class of ribozymes has potential to control pathogenic RNA replicons.  相似文献   

17.
Viroids replicate via a rolling circle mechanism, and cleavage/ligation requires extensive rearrangement of the highly base-paired native structure. For Potato spindle tuber viroid (PSTVd), the switch from cleavage to ligation is driven by the change from a multibranched tetraloop structure to a loop E conformation. Here we present evidence that processing of Citrus viroid III (CVd-III), a member of a related group of viroids that also replicate in the nucleus, may proceed via a distinct pathway. Chemical probing of PSTVd and CVd-III miniRNAs with DMS and CMCT revealed that the loop E motifs of these two viroids have quite different tertiary structures. As shown by temperature gradient gel electrophoresis, the presence of two likely Watson-Crick GC pairs results in a significant overall stabilization of the CVd-III loop E-like motif. Unlike PSTVd, the upper strand of the CVd-III loop E-like motif cannot fold into a GNRA tetraloop, and comparison of suboptimal structures indicates that the initial cleavage event could occur on the 5' side of the only GU wobble pair in a helix involving a nearby pair of inverted repeats. According to our model, rearrangement of 3' sequences into a hairpin stem containing an identical arrangement of GC, GU, and CG base pairs and a second cleavage event is followed by formation of loop E, which serves to align the 5' and 3' termini of the CVd-III monomer prior to ligation. Because ligation would occur within loop E itself, stabilization of this motif may be needed to hold the 5' and 3' termini of CVd-III in position for the host ligase.  相似文献   

18.
Chrysanthemum chlorotic mottle viroid (CChMVd) RNA (398-401 nucleotides) can form hammerhead ribozymes that play a functional role in its replication through a rolling-circle mechanism. In contrast to most other viroids, which adopt rod-like or quasi-rod-like secondary structures of minimal free energy, the computer-predicted conformations of CChMVd and Peach latent mosaic viroid (PLMVd) RNAs are branched. Moreover, the covariations found in a number of natural CChMVd variants support that the same or a closely related conformation exists in vivo. Here we report that the CChMVd natural variability also supports that the branched conformation is additionally stabilized by a kissing-loop interaction resembling another one proposed in PLMVd from in vitro assays. Moreover, site-directed mutagenesis combined with bioassays and progeny analysis showed that: (1) single CChMVd mutants affecting the kissing loops had low or no infectivity at all, whereas infectivity was recovered in double mutants restoring the interaction; (2) mutations affecting the structure of the regions adjacent to the kissing loops reverted to wild type or led to rearranged stems, also supporting their interaction; and (3) the interchange between 4 nucleotides of each of the two kissing loops generated a viable CChMVd variant with eight mutations. PAGE analysis under denaturing and nondenaturing conditions revealed that the kissing-loop interaction determines proper in vitro folding of CChMVd RNA. Preservation of a similar kissing-loop interaction in two hammerhead viroids with an overall low sequence similarity suggests that it facilitates in vivo the adoption and stabilization of a compact folding critical for viroid viability.  相似文献   

19.
The RNA ligase RtcB splices broken RNAs with 5'-OH and either 2',3'-cyclic phosphate or 3'-phosphate ends. The 3'-phosphate ligase activity requires GTP and entails the formation of covalent RtcB-(histidinyl)-GMP and polynucleotide-(3')pp(5')G intermediates. There are currently two models for how RtcB executes the strand sealing step. Scheme 1 holds that the RNA 5'-OH end attacks the 3'-phosphorus of the N(3')pp(5')G end to form a 3',5'-phosphodiester and release GMP. Scheme 2 posits that the N(3')pp(5')G end is converted to a 2',3'-cyclic phosphodiester, which is then attacked directly by the 5'-OH RNA end to form a 3',5'-phosphodiester. Here we show that the sealing of a 2',3'-cyclic phosphate end by RtcB requires GTP, is contingent on formation of the RtcB-GMP adduct, and involves a kinetically valid RNA(3')pp(5')G intermediate. Moreover, we find that RtcB catalyzes the hydrolysis of a 2',3'-cyclic phosphate to a 3'-phosphate at a rate that is at least as fast as the rate of ligation. These results weigh in favor of scheme 1. The cyclic phosphodiesterase activity of RtcB depends on GTP and the formation of the RtcB-GMP adduct, signifying that RtcB guanylylation precedes the cyclic phosphodiesterase and 3'-phosphate ligase steps of the RNA splicing pathway.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号