首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 303 毫秒
1.
Structural changes of creatine kinase upon substrate binding.   总被引:2,自引:0,他引:2       下载免费PDF全文
Small-angle x-ray scattering was used to investigate structural changes upon binding of individual substrates or a transition state analog complex (TSAC; Mg-ADP, creatine, and KNO3) to creatine kinase (CK) isoenzymes (dimeric muscle-type (M)-CK and octameric mitochondrial (Mi)-CK) and monomeric arginine kinase (AK). Considerable changes in the shape and the size of the molecules occurred upon binding of Mg-nucleotide or TSAC. The radius of gyration of Mi-CK was reduced from 55.6 A (free enzyme) to 48.9 A (enzyme plus Mg-ATP) and to 48.2 A (enzyme plus TSAC). M-CK showed similar changes from 28.0 A (free enzyme) to 25.6 A (enzyme plus Mg-ATP) and to 25.5 A (enzyme plus TSAC). Creatine alone did not lead to significant changes in the radii of gyration, nor did free ATP or ADP. AK also showed a change of the radius of gyration from 21.5 A (free enzyme) to 19.7 A (enzyme plus Mg-ATP), whereas with arginine alone only a minor change could be observed. The primary change in structure as seen with monomeric AK seems to be a Mg-nucleotide-induced domain movement relative to each other, whereas the effect of substrate may be of local order only. In CK, however, additional movements have to be involved.  相似文献   

2.
Creatine kinase (CK) catalyzes the reversible conversion of creatine and ATP to phosphocreatine and ADP, thereby helping maintain energy homeostasis in the cell. Here we report the first X-ray structure of CK bound to a transition-state analogue complex (CK-TSAC). Cocrystallization of the enzyme from Torpedo californica (TcCK) with ADP-Mg(2+), nitrate, and creatine yielded a homodimer, one monomer of which was liganded to a TSAC complex while the second monomer was bound to ADP-Mg(2+) alone. The structures of both monomers were determined to 2.1 A resolution. The creatine is located with the guanidino nitrogen cis to the methyl group positioned to perform in-line attack at the gamma-phosphate of ATP-Mg(2+), while the ADP-Mg(2+) is in a conformation similar to that found in the TSAC-bound structure of the homologue arginine kinase (AK). Three ligands to Mg(2+) are contributed by ADP and nitrate and three by ordered water molecules. The most striking difference between the substrate-bound and TSAC-bound structures is the movement of two loops, comprising residues 60-70 and residues 323-332. In the TSAC-bound structure, both loops move into the active site, resulting in the positioning of two hydrophobic residues (one from each loop), Ile69 and Val325, near the methyl group of creatine. This apparently provides a specificity pocket for optimal creatine binding as this interaction is missing in the AK structure. In addition, the active site of the transition-state analogue complex is completely occluded from solvent, unlike the ADP-Mg(2+)-bound monomer and the unliganded structures reported previously.  相似文献   

3.
The 5 tryptophan residues of chicken sarcomeric mitochondrial creatine kinase (Mib-CK) were individually replaced by phenylalanine or cysteine using site-directed mutagenesis. The mutant proteins were analyzed by enzyme kinetics, fluorescence spectroscopy, circular dichroism, and conformational stability studies. In the present work, Trp-223 is identified as an active-site residue whose replacement even by phenylalanine resulted in > or = 96% inactivation of the enzyme. Trp-223 is responsible for a strong (18-21%) fluorescence quenching effect occurring upon formation of a transition state-analogue complex (TSAC;Mib-CK.creatine.MgADP.NO3-), and Trp-223 is probably required for the conformational change leading to the TSAC-induced octamer dissociation of Mib-CK. Replacement of Trp-206 by cysteine led to a destabilization of the active-site structure, solvent exposure of Trp-223, and to the dissociation of the Mib-CK dimers into monomers. However, this dimer dissociation was counteracted by TSAC formation or the presence of ADP alone. Trp-264 is shown to be located at the dimer-dimer interfaces within the Mib-CK octamer, being the origin of another strong (25%) fluorescence quenching effect, which was observed upon the TSAC-induced octamer dissociation. Substitution of Trp-264 by cysteine drastically accelerated the TSAC-induced dissociation and destabilized the octameric structure by one-fourth of the total free interaction energy, probably by weakening hydrophobic contacts. The roles of the other 2 tryptophan residues, Trp-213 and Trp-268, could be less well assigned.  相似文献   

4.
In creatine kinases (CKs), the amino acid residue-96 is a strictly conserved arginine. This residue is not directly associated with substrate binding, but it is located close to the binding site of the substrate creatine. On the other hand, the residue-96 is known to be involved in expression in the substrate specificity of various other phosphagen (guanidino) kinases, since each enzyme has a specific residue at this position: arginine kinase (Tyr), glycocyamine kinase (Ile), taurocyamine kinase (His) and lombricine kinase (Lys). To gain a greater understanding of the role of residue-96 in CKs, we replaced this residue in zebra fish Danio rerio cytoplasmic CK with other 19 amino acids, and expressed these constructs in Escherichia coli. All the twenty recombinant enzymes, including the wild-type, were obtained as soluble form, and their activities were determined in the forward direction. Compared with the activity of wild-type, the R96K mutant showed significant activity (8.3% to the wild-type), but 10 mutants (R96Y, A, S, E, H, T, F, C, V and N) showed a weak activity (0.056–1.0%). In the remaining mutants (R96Q, G, M, P, L, W, D and I), the activity was less than 0.05%. Our mutagenesis studies indicated that Arg-96 in Danio CK can be substituted for partially by Lys, but other replacements caused remarkable loss of activity. From careful inspection of the crystal structures (transition state analog complex (TSAC) and open state) of Torpedo cytoplasmic CK, we found that the side chain of R96 forms hydrogen bonds with A339 and D340 only in the TSAC structure. Based on the assumption that CKs consist of four dynamic domains (domains 1–3, and fixed domain), the above hydrogen bonds act to link putative domains 1 and 3 in TSAC structure. We suggest that residue-96 in CK and equivalent residues in other phosphagen kinases, which are structurally similar, have dual roles: (1) one involves in distinguishing guanidino substrates, and (2) the other plays a key role in organizing the hydrogen-bond network around residue-96 which offers an appropriate active center for the high catalytic turnover. The mode of development of the network appears to be unique each phosphagen kinase, reflecting evolution of each enzyme.  相似文献   

5.
Reactivity of the histidyl groups of yeast phenylalanyl-tRNA synthetase was studied in the absence or presence of substrates. In the absence of substrates about 10 histidine residues were found to react with similar kinetic constants. Phenylalanine at 10(-3) M was found to protect two histidyl residues; increasing the amino acid concentration to 5 . 10(-3) M resulted in the protection of two more histidyl groups. tRNAPhe did not afford any protection to histidine residues, but acylated phenylalanyl-tRNA (Phe-tRNAPhe) protected two of the four histidyl groups already protected by phenylalanine. These results suggest the existence of two different sets of accepting sites for phenylalanine: one specific for the free amino acid, the other one specific for the amino acid linked to the tRNA, but being accessible to free phenylalanine, with a somewhat lower binding constant, ATP was found to mask around four histidyl residues against diethylpyrocarbonate modification. By photoirradiation of enzyme-phenylalanine complex in the presence of rose bengale, a significant amount of amino acid was bound to the alpha subunit (Mr = 73 000) of phenylalanyl-tRNA synthetase, confirming that the amino acid binding site is located on this subunit, as previously suggested by modification of thiol groups. Upon irradiation of an enzyme-tRNA complex, almost no covalent binding of tRNA occurred during enzyme inactivation, suggesting that the histidyl residues involved in the enzymic activity are not required for tRNA binding.  相似文献   

6.
The arginine residue(s) necessary for tetrahydrofolate binding to sheep liver serine hydroxymethyltransferase were located by phenylglyoxal modification. The incorporation of [7-14C]phenylglyoxal indicated that 2 arginine residues were modified per subunit of the enzyme and the modification of these residues was prevented by tetrahydrofolate. In order to locate the sites of phenylglyoxal modification, the enzyme was reacted in the presence and absence of tetrahydrofolate using unlabeled and radioactive phenylglyoxal, respectively. The labeled phenylglyoxal-treated enzyme was digested with trypsin, and the radiolabeled peptides were purified by high-performance liquid chromatography on reversed-phase columns. Sequencing the tryptic peptides indicated that Arg-269 and Arg-462 were the sites of phenylglyoxal modification. Neither a spectrally discernible 495-nm intermediate (characteristic of the native enzyme when substrates are added) nor its enhancement by the addition of tetrahydrofolate, was observed with the phenylglyoxal-modified enzyme. There was no enhancement of the rate of the exchange of the alpha-proton of glycine upon addition of tetrahydrofolate to the modified enzyme as was observed with the native enzyme. These results demonstrate the requirement of specific arginine residues for the interaction of tetrahydrofolate with sheep liver serine hydroxymethyltransferase.  相似文献   

7.
Recombinant rabbit muscle creatine kinase (CK) was titrated with MgADP in 50 mM Bicine and 5 mM Mg(OAc)2, pH 8.3, at 30.0 degrees C by following a decrease in the protein's intrinsic fluorescence. In the presence of 50 mM NaOAc, but in the absence of added creatine or nitrate, MgADP has an apparent K(d) of 135 +/- 7 microM, and the total change in fluorescence on saturation (Delta%F) is 15.3 +/- 0.3%. Acetate was used as the anion in this experiment because it does not promote the formation of a CK.MgADP.anion.creatine transition-state analogue complex (TSAC) [Millner-White and Watts (1971) Biochem. J. 122, 727-740]. In the presence of 80 mM creatine, but no nitrate, the apparent K(d) for MgADP remains essentially unchanged at 132 +/- 10 microM, while Delta%F decreases slightly to 13.2 +/- 0.3%. In the presence of 10 mM nitrate, but no creatine, the apparent K(d) is once again essentially unchanged at 143 +/- 23 microM, but the Delta%F is markedly reduced to 4.2 +/- 0.2%. The presence of both 10 mM nitrate and 80 mM creatine during titration reduces the apparent K(d) for MgADP 10-fold to 13.7 +/- 0.7 microM, and Delta%F increases to 20.6 +/- 0.3%, strongly suggesting that the simultaneous presence of saturating levels of creatine and nitrate increases the affinity of CK for MgADP and promotes the formation of the enzyme*MgADP*nitrate*creatine TSAC. When the fluorescence of CK was titrated with MgADP in the presence of 80 mM creatine and fixed saturating concentrations of various anions, apparent K(d) values for MgADP of 132 +/- 10 microM, 25.2 +/- 1.3 microM, 18.8 +/- 0.9 microM, 13.7 +/- 0.7 microM, and 6.4 +/- 0.7 microM were observed as the anion was changed from acetate to formate to chloride to nitrate to nitrite, respectively. This is the same trend reported by Millner-White and Watts for the effectiveness of various monovalent anions in forming the CK.MgADP.anion.creatine TSAC. On titration of CK with MgADP in the presence of 80 mM creatine and various fixed concentrations of NaNO3, the apparent K(d) for MgADP decreases with increasing fixed concentrations of nitrate. A plot of the apparent K(d) for MgADP vs [NO3-] suggests a K(d) for nitrate from the TSAC of 0.39 +/- 0.07 mM. Similarly, titration with MgADP in the presence of 10 mM NaNO3 and various fixed concentrations of creatine gives a value of 0.9 +/- 0.4 mM for the dissociation of creatine from the TSAC. The data were used to calculate K(TDAC), the dissociation constant of the quaternary TSAC into its individual components, of 3 x 10(-10) M3. To our knowledge this is the first reported dissociation constant for a ternary or quaternary TSAC.  相似文献   

8.
The specificity of the cyclic AMP-dependent protein kinase was examined using two series of dodecapeptides as substrates. One series consisted of peptides of the general sequence (Gly)x-Arg-Arg-(Gly)y-Ala-Ser-Leu-Gly in which x + y = 6. The other series consisted of peptides of the sequence (Gly)x-Lys-Arg-(Gly)y-Ala-Ser-Leu-Gly in which x + y was again equal to 6. The peptides Gly-Gly-Gly-Gly-Gly-Gly-Gly-Arg-Arg-Ser-Leu-Gly and Gly-Gly-Gly-Gly-Gly-Gly-Gly-Lys-Arg-Ser-Leu-Gly were also examined. In the series in which the adjacent arginines were located various distances from the serine, the substrate for which the enzyme clearly exhibited optimal kinetic constants contained one amino acid residue between the basic residues and serine. Direct binding studies of N alpha-[3H]acetyl peptides to catalytic subunit of cyclic AMP-dependent protein kinase revealed a correlation between binding affinity and the ability to serve as substrate for the enzyme. In the second series in which the adjacent basic amino acids were Lys-Arg, optimal kinetic constants were again obtained when these residues were separated from serine by a single amino acid. This latter result was surprising in view of phosphorylation site sequences in the known physiologically significant protein substrates for the kinase, since those containing Lys-Arg all contain two amino acids between these residues and serine.  相似文献   

9.
Porphyrinogen carboxy-lyase is an enzyme that sequentially decarboxylates uroporphyrinogen III (8-COOH) to yield coproporphyrinogen III (4-COOH). In mammals this enzyme activity is impaired by hexachlorobenzene treatment, through generation of an enzyme inhibitor. The interaction of porphyrinogen carboxy-lyase inhibitor, extracted from the liver of hexachlorobenzene-treated rats, with substrate decarboxylation sites on the enzyme, was studied using four different carboxylated substrates belonging to the isomeric III series of naturally-formed porphyrinogens containing 8-,7-,6- and 5-COOH. Similar inhibitor effects were elicited against all the substrates assayed, with the exception of pentacarboxyporphyrinogen III in which decarboxylation was not inhibited to same extent. Enzyme protection assays in the presence of the different substrates, indicated that each porphyrinogen protects its own decarboxylation from inhibitor action. Preincubation of the inhibitor with normal enzyme increased its inhibitory effect. On the other hand, preincubation of both enzyme and inhibitor with superoxide dismutase or mannitol, did not alter inhibitory activity. Preincubation of the inhibitor with a number of amino acids showed that only arginine and its derivative N alpha-Benzoyl-L-Arginine ethyl ester interact with the inhibitor, noticeably reducing its ability to inhibit porphyrinogen carboxy-lyase. Albumin, histidine, serine, cysteine and imidazol, were unable to quench inhibitor activity. The present results indicate that the inhibitor acts at the binding site of each porphyrinogen. Taking into account that arginine is related to enzyme activity, and that histidine is found at the binding site of the substrates, the results suggest that the inhibitor could bind to arginine residues, blocking the access of substrates to histidine and altering the adequate orientation for decarboxylation by masking the positively charged active site necessary for porphyrinogen binding to the enzyme. In addition an indirect effect of the inhibitor mediated through free radicals could be discarded.  相似文献   

10.
Titration of cysteine residues of spinach glutamine synthetase with 5-5' dithiobis (2-nitrobenzoic acid) indicates that there are five such residues per monomer of enzyme and that two of these five are on the surface of the molecule. The presence of substrates, or either of the competitive inhibitors methionine sulfoximine or phosphinothricin, completely protects both of the surface sulfhydryls from titration. This suggests that both are located at the active site. In the absence of Mg2+ and ATP, both surface sulfhydryls must be modified before loss of activity. We conclude that while both of the cysteine residues are located at the active site, only one of them may be involved in catalysis. Because the cysteine residue which is implicated in catalysis can be protected by Mg2+ and ATP, we believe that it may be located at or near the binding site of these ligands.  相似文献   

11.
An endopeptidase was purified to homogeneity from the cell extracts of Treponema denticola ATCC 35405 (a human oral spirochete) by a procedure that comprised dialysis, anion exchange fast protein liquid chromatography (FPLC), hydroxylapatite FPLC, immobilized metal affinity FPLC, FPLC chromatofocusing, and two consecutive gel permeation FPLC steps. The enzyme is a 62-kDa protein with an isoelectric point of 6.5-7.0. Experiments with enzyme inhibitors suggest that this enzyme is a metallopeptidase and that its activity is not dependent on sulfhydryl or serine residues. The enzyme is active on furylacryloyl-Leu-Gly-Pro-Ala (FALGPA; pH optimum near 6.25), bradykinin (Bk), and several Bk-related peptides. In FALGPA, the cleavage site is the Leu-Gly bond. An imino acid is absolutely necessary in position P'2. The shortest hydrolyzed peptide was FALGPA, the hydrolysis of which is strongly and competitively inhibited by Bk (Ki = 5.0 microM). The pyrophosphate ion and phosphoramidon also inhibited the hydrolysis of FALGPA. The enzyme does not hydrolyze all typical synthetic collagenase substrates, Azocoll, Azocasein, or Type I and Type IV collagens, or any other proteins tested. In Bk-related peptides, the hydrolyzed bond was Phe5-Ser6. Since a Bk antagonist and a Bk-potentiating pentapeptide also were good substrates, it is possible that the enzyme hydrolyzes Bks and related peptides only because of the coincidental, specific amino acid sequence of those substrates. A proposal is made that since a substantial portion of the amino acid sequence of FALGPA is present in collagen (and additionally acknowledging that the furylacryloyl residue structurally resembles that of proline), the natural substrates of this enzyme may be small, soluble collagen fragments produced by other enzymes from periodontal connective tissue, and that such peptides are important for the nutrition and pathogenicity of T. denticola.  相似文献   

12.
Epoxycreatine (N-(2,3-epoxypropyl)-N-amidinoglycine) is an affinity label of creatine kinase that irreversibly and completely inactivates the enzyme (Marletta, M. A., and Kenyon, G. L. (1979) J. Biol. Chem. 254, 1879-1886). To identify active site residues of rabbit muscle creatine kinase, the site of modification of it by epoxycreatine has been determined. Separation by high performance liquid chromatography of a tryptic digest of [14C]epoxycreatine-modified creatine kinase yielded two radiolabeled peptides. The larger of these consisted of amino acids Ala-266 through Arg-291 and was labeled with epoxycreatine at Cys-282. Attempts to purify completely the other labeled peptide were not successful; however, it was possible to obtain, by tandem mass spectrometry, a collision-induced dissociation spectrum of it from a mixture of several peptides. This peptide was a fragment (amino acids Val-279 through Arg-291) of the previously identified peptide and was also labeled at Cys-282. Model studies with cysteine and epoxycreatine have demonstrated that opening of the oxirane ring occurs by attack of the cysteine thiolate at the terminal carbon of the epoxide. These results are consistent with previous studies on the base lability of the label; however, a carboxyl group in the active site is not labeled, as had been previously suggested. These results provide evidence that Cys-282 is located in or near the creatine-binding site and will also be important in identifying and delineating the boundaries of the active site of creatine kinase.  相似文献   

13.
The porcine pancreatic alpha-amylase is a (beta/alpha)8-barrel protein, containing domains A and B (peptide sequence 1-403) and a distinct C-domain (peptide sequence 404-496). Separation of the terminal C-domain from the A and B domains has been attempted by limited proteolysis in the hinge region. Subtilisin was found to hydrolyse amylase between residues 369 and 370 situated in the loop between the eighth beta-strand and alpha-helix. The cleaved amylase was isolated by chromatofocusing and found to retain about 60% of the activity of the native enzyme, while the isolated fragments were inactive. Antigen binding fragments prepared from polyclonal antibodies to native amylase and the CNBr-fragment P1 (peptide sequence 395-496) respectively, were tested for influence on the enzyme activity. Antibodies directed against P1 had no effect whereas antibodies against the peptide sequence 1-394 and amylase respectively inhibited hydrolysis of substrates having four or more glucose residues but not of shorter oligomaltosides. Crystallographic analysis revealed that changes in the region of residue 369 might affect the conformation of the active site as well as of a second binding site. This site, located on the enzyme surface, is proposed to be required for the hydrolysis of larger substrates.  相似文献   

14.
Lactate dehydrogenase (D-lactate:NAD+ oxidoreductase, EC 1.1.1.28) from the horseshoe crab, Limulus polyphemus, a dimeric enzyme stereospecific for D-lactate, has been purified by affinity chromatography. Maleyl tryptic peptides containing arginine residues isolated from the Limulus enzyme have been characterized and sequenced. The small peptides obtained from similarly treated L-lactate-specific enzyme homologs define major portions of the substrate and coenzyme binding regions and are virtually identical among L-lactate-specific enzymes. Although the six small peptides and free arginine isolated from the Limulus enzyme indicate that the small number of arginine tryptic peptides are located in a few discrete consecutive clusters similarly to the L-lactate dehydrogenases, the peptides nevertheless show no obvious sequence homology to the corresponding peptides from L-lactate dehydrogenases. These results indicate that this lactate dehydrogenase of altered substrate specificity either evolved with major rearrangements of the active site if it evolved from an L-lactate dehydrogenase, or that D-lactate dehydrogenases have evolved from a different protein. The results contradict proposed models which suggest that minor changes in the spatial orientation of pyruvate resulting from minimal rearrangement of the active site could accommodate the change in substrate specificity.  相似文献   

15.
Ap(4)A hydrolases are Nudix enzymes that regulate intracellular dinucleoside polyphosphate concentrations, implicating them in a range of biological events, including heat shock and metabolic stress. We have demonstrated that ATP x MgF(x) can be used to mimic substrates in the binding site of Ap(4)A hydrolase from Lupinus angustifolius and that, unlike previous substrate analogs, it is in slow exchange with the enzyme. The three-dimensional structure of the enzyme complexed with ATP x MgF(x) was solved and shows significant conformational changes. The substrate binding site of L. angustifolius Ap(4)A hydrolase differs markedly from the two previously published Nudix enzymes, ADP-ribose pyrophosphatase and MutT, despite their common fold and the conservation of active site residues. The majority of residues involved in substrate binding are conserved in asymmetrical Ap(4)A hydrolases from pathogenic bacteria, but are absent in their human counterparts, suggesting that it might be possible to generate compounds that target bacterial, but not human, Ap(4)A hydrolases.  相似文献   

16.
ClpP is a self-compartmentalized protease, which has very limited degradation activity unless it associates with ClpX to form ClpXP or with ClpA to form ClpAP. Here, we show that ClpX binding stimulates ClpP cleavage of peptides larger than a few amino acids and enhances ClpP active-site modification. Stimulation requires ATP binding but not hydrolysis by ClpX. The magnitude of this enhancement correlates with increasing molecular weight of the molecule entering ClpP. Amino-acid substitutions in the channel loop or helix A of ClpP enhance entry of larger substrates into the free enzyme, eliminate ClpX binding in some cases, and are not further stimulated by ClpX binding in other instances. These results support a model in which the channel residues of free ClpP exclude efficient entry of all but the smallest peptides into the degradation chamber, with ClpX binding serving to relieve these inhibitory interactions. Specific ClpP channel variants also prevent ClpXP translocation of certain amino-acid sequences, suggesting that the wild-type channel plays an important role in facilitating broad translocation specificity. In combination with previous studies, our results indicate that collaboration between ClpP and its partner ATPases opens a gate that functions to exclude larger substrates from isolated ClpP.  相似文献   

17.
Prolyl oligopeptidase, which is involved in memory disorders, is a member of a new family of serine peptidases. In addition to the peptidase domain, the enzyme contains a beta-propeller, which excludes large peptides from the active site. The enzyme is inhibited with thiol reagents, possibly by reacting with Cys-255 located close to the substrate binding site. This assumption was tested with the Cys-255 --> Thr, Cys-255 --> Ala, and Cys-255 --> Ser variants of prolyl oligopeptidase. In contrast to the wild type enzyme, the Cys-255 --> Thr variant was not inhibited with N-ethylmaleimide, indicating that Cys-255, of the 16 free cysteine residues, exclusively accounts for the enzyme inhibition. Unlike the wild type enzyme that showed a doubly bell-shaped pH rate profile, the modified enzyme displayed a single bell-shaped pH dependence with benzyloxycarbonyl-Gly-Pro-naphthylamide. It was the high pH form of the enzyme that virtually disappeared with all three enzyme variants. A substantial reduction was also observed in k(cat)/K(m) for the aminobenzoyl-Ser-Pro-Phe(NO(2))-Ala-OH substrate. The high pK(a) (9.77) of Cys-255 determined by titration with N-ethylmaleimide excluded the possibility that ionization of the thiol group was responsible for generation of the two active enzyme forms. The impaired activity of the enzyme variants could be rationalized in terms of weaker binding, which manifests itself in high K(m) for substrates and high K(i) for inhibitors, like benzyloxycarbonyl-Gly-Pro-OH and aminobenzoyl-Ser-d-Pro-Phe(NO(2))-Ala-OH. It was concluded that, besides selecting substrates by size, the beta-propeller domain containing Cys-255 remarkably contributed to catalysis of the peptidase domain.  相似文献   

18.
The presence of arginine at the active site of avian liver phosphoenolpyruvate carboxykinase was studied by chemical modification followed by a characterization of the modified enzyme. The arginine-specific reagents phenylglyoxal, 2,3-butanedione, and 1,2-cyclohexanedione all irreversibly inhibit the enzyme with second-order rate constants of 3.42 M-1 min-1, 3.13 M-1 min-1 and 0.313 M-1 min-1, respectively. The substrates phosphoenolpyruvate, IDP, and the activator Mn2+ offer little to modest protection from inhibition. Either CO2 or CO2 in the presence of any of the other substrates elicited potent protection against modification. Protection by CO2 against modification by phenylglyoxal or 1,2-cyclohexanedione gave a biphasic pattern. Rapid loss in activity to 40-60% occurred, followed by a very slow loss. Kinetics of inhibition suggest that the modification of arginine is specific and leads to loss of enzymatic activity. Substrate protection studies indicate an arginine residue(s) at the CO2 site of phosphoenolpyruvate carboxykinase. Apparently no arginine residues are at the binding site of the phosphate-containing substrates. Partially inactive (40-60% activity) enzyme, formed in the presence of CO2, has a slight change of its kinetic constants, and no alteration of its binding parameters or secondary structure as demonstrated by kinetic, proton relaxation rate, and circular dichroism studies. Labeling of enzyme with [(7-)14C]phenylglyoxal in the presence of CO2 (40-60% activity) showed 2 mol of phenylglyoxal/enzyme or 1 arginine or cysteine residue modified. Labeling of phosphoenolpyruvate carboxykinase in the absence of CO2 yielded 6 mol of label/enzyme. Labeling results indicate that avian phosphoenolpyruvate carboxykinase has 2 or 3 reactive arginine residues out of a total of 52 and only 1 or 2 are located at the active site and are involved in CO2 binding and activation.  相似文献   

19.
Insulin degrading enzyme (IDE) utilizes a large catalytic chamber to selectively bind and degrade peptide substrates such as insulin and amyloid beta (Abeta). Tight interactions with substrates occur at an exosite located approximately 30 A away from the catalytic center that anchors the N-terminus of substrates to facilitate binding and subsequent cleavages at the catalytic site. However, IDE also degrades peptide substrates that are too short to occupy both the catalytic site and the exosite simultaneously. Here, we use kinins as a model system to address the kinetics and regulation of human IDE with short peptides. IDE specifically degrades bradykinin and kallidin at the Pro/Phe site. A 1.9 A crystal structure of bradykinin-bound IDE reveals the binding of bradykinin to the exosite and not to the catalytic site. In agreement with observed high K(m) values, this suggests low affinity of bradykinin for IDE. This structure also provides the molecular basis on how the binding of short peptides at the exosite could regulate substrate recognition. We also found that human IDE is potently inhibited by physiologically relevant concentrations of S-nitrosylation and oxidation agents. Cysteine-directed modifications play a key role, since an IDE mutant devoid of all 13 cysteines is insensitive to the inhibition by S-nitrosoglutathione, hydrogen peroxide, or N-ethylmaleimide. Specifically, cysteine 819 of human IDE is located inside the catalytic chamber pointing toward an extended hydrophobic pocket and is critical for the inactivation. Thiol-directed modification of this residue likely causes local structural perturbation to reduce substrate binding and catalysis.  相似文献   

20.
The hydrolysis of substrates (maltoheptaose, maltopentaose, and maltotetraose) catalyzed by soybean beta-amylase [EC 3.2.1.2] at pH 5.4 and 25 degrees C was followed by monitoring small changes in the quenching of fluorescence due to tryptophan residues by the stopped-flow method. By analysis of whole time course, the dissociation constants, KdS, of enzyme-substrate and enzyme-product complexes were reasonably evaluated; and the difference in fluorescence intensities per mol between the enzyme-complex (ES or EP) and the free enzyme, delta F, was determined. The molecular activity, k0, was also determined by a new method of half time analysis. The KdS and k0 values are in good agreement with our kinetic data reported previously. The delta Fs of substrates were of smaller magnitude than those of products (G2 and G3), which means that the higher the binding affinity of the ligand is, the smaller the delta F value is. This indicates that at least two tryptophan residues must be located in the active site if the enzyme is rigid, or that if there is only one, the active site must undergo a structural change caused by the binding of ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号