首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have previously purified a novel GTPase-activating protein (GAP) for Ras which is immunologically distinct from the known Ras GAPs, p120GAP and neurofibromin (M. Maekawa, S. Nakamura, and S. Hattori, J. Biol. Chem. 268:22948-22952, 1993). On the basis of the partial amino acid sequence, we have obtained a cDNA which encodes the novel Ras GAP. The predicted protein consists of 847 amino acids whose calculated molecular mass, 96,369 Da, is close to the apparent molecular mass of the novel Ras GAP, 100 kDa. The amino acid sequence shows a high degree of similarity to the entire sequence of the Drosophila melanogaster Gap1 gene. When the catalytic domain of the novel GAP was compared with that of Drosophila Gap1, p120GAP, and neurofibromin, the highest degree of similarity was again observed with Gap1. Thus, we designated this gene Gap1m, a mammalian counterpart of the Drosophila Gap1 gene. Expression of Gap1m was relatively high in brain, placenta, and kidney tissues, and it was expressed at low levels in other tissues. A recombinant protein consisting of glutathione-S-transferase and the GAP-related domain of Gap1m stimulated GTPase of normal Ras but not that of Ras having valine at the 12th residue. Expression of the same region in Saccharomyces cerevisiae suppressed the ira2- phenotype. In addition to the GAP catalytic domain, Gap1m has two domains with sequence closely related to those of the phospholipid-binding domain of synaptotagmin and a region with similarity to the unique domain of Btk tyrosine kinase. These results clearly show that Gap1m is a novel Ras GAP molecule of mammalian cells.  相似文献   

2.
Loss of function of the Schizosaccharomyces pombe gap1 gene results in the same phenotypes as those caused by an activated ras1 mutation, i.e., hypersensitivity to the mating factor and inability to perform efficient mating. Sequence analysis of gap1 indicates that it encodes a homolog of the mammalian Ras GTPase-activating protein (GAP). The predicted gap1 gene product has 766 amino acids with relatively short N- and C-terminal regions flanking the conserved core sequence of GAP. Genetic analysis suggests that S. pombe Gap1 functions primarily as a negative regulator of Ras1, like S. cerevisiae GAP homologs encoded by IRA1 and IRA2, but is unlikely to be a downstream effector of the Ras protein, a role proposed for mammalian GAP. Thus, Gap1 and Ste6, a putative GDP-GTP-exchanging protein for Ras1 previously identified, appear to play antagonistic roles in the Ras-GTPase cycle in S. pombe. Furthermore, we suggest that this Ras-GTPase cycle involves the ra12 gene product, another positive regulator of Ras1 whose homologs have not been identified in other organisms, which could function either as a second GDP-GTP-exchanging protein or as a factor that negatively regulates Gap1 activity.  相似文献   

3.
Sullivan KM  Rubin GM 《Genetics》2002,161(1):183-193
Calcineurin is a Ca(2+)-calmodulin-activated, Ser-Thr protein phosphatase that is essential for the translation of Ca(2+) signals into changes in cell function and development. We carried out a dominant modifier screen in the Drosophila eye using an activated form of the catalytic subunit to identify new targets, regulators, and functions of calcineurin. An examination of 70,000 mutagenized flies yielded nine specific complementation groups, four that enhanced and five that suppressed the activated calcineurin phenotype. The gene canB2, which encodes the essential regulatory subunit of calcineurin, was identified as a suppressor group, demonstrating that the screen was capable of identifying genes relevant to calcineurin function. We demonstrated that a second suppressor group was sprouty, a negative regulator of receptor tyrosine kinase signaling. Wing and eye phenotypes of ectopic activated calcineurin and genetic interactions with components of signaling pathways suggested a role for calcineurin in repressing Egf receptor/Ras signal transduction. On the basis of our results, we propose that calcineurin, upon activation by Ca(2+)-calmodulin, cooperates with other factors to negatively regulate Egf receptor signaling at the level of sprouty and the GTPase-activating protein Gap1.  相似文献   

4.
5.
Arabidopsis proteins were predicted which share an 80 residue zinc finger domain known from ADP-ribosylation factor GTPase-activating proteins (ARF GAPs). One of these is a 37 kDa protein, designated ZAC, which has a novel domain structure in which the N-terminal ARF GAP domain and a C-terminal C2 domain are separated by a region without homology to other known proteins. Zac promoter/-glucuronidase reporter assays revealed highest expression levels in flowering tissue, rosettes and roots. ZAC protein was immuno-detected mainly in association with membranes and fractionated with Golgi and plasma membrane marker proteins. ZAC membrane association was confirmed in assays by a fusion between ZAC and the green fluorescence protein and prompted an analysis of the in vitro phospholipid-binding ability of ZAC. Phospholipid dot-blot and liposome-binding assays indicated that fusion proteins containing the ZAC-C2 domain bind anionic phospholipids non-specifically, with some variance in Ca2+ and salt dependence. Similar assays demonstrated specific affinity of the ZAC N-terminal region (residues 1–174) for phosphatidylinositol 3-monophosphate (PI-3-P). Binding was dependent in part on an intact zinc finger motif, but proteins containing only the zinc finger domain (residues 1–105) did not bind PI-3-P. Recombinant ZAC possessed GTPase-activating activity on Arabidopsis ARF proteins. These data identify a novel PI-3-P-binding protein region and thereby provide evidence that this phosphoinositide is recognized as a signal in plants. A role for ZAC in the regulation of ARF-mediated vesicular transport in plants is discussed.  相似文献   

6.
ADP-ribosylation factor 1 (ARF1) is a key regulator of transport in the secretory system. Like all small GTPases, deactivation of ARF1 requires a GTPase-activating protein (GAP) that promotes hydrolysis of GTP to GDP on ARF1. Structure-function analysis of a GAP for ARF1 revealed that its activity in vivo requires not only a domain that catalyzes hydrolysis of GTP on ARF1 but also a non-catalytic domain. In this study, we show that the non-catalytic domain of GAP is required for its recruitment from cytosol to membranes and that this domain mediates the interaction of GAP with the transmembrane KDEL receptor. Blocking its interaction with the KDEL receptor leaves the GAP cytosolic and prevents the deactivation in vivo of Golgi-localized ARF1. Thus, these findings suggest that the KDEL receptor plays a critical role in the function of GAP by regulating its recruitment from cytosol to membranes, where it can then act on its membrane-restricted target, the GTP-bound form of ARF1.  相似文献   

7.
T Aoe  E Cukierman  A Lee  D Cassel  P J Peters    V W Hsu 《The EMBO journal》1997,16(24):7305-7316
The small GTPase ADP-ribosylation factor 1 (ARF1) is a key regulator of intracellular membrane traffic. Regulators of ARF1, its GTPase-activating protein (GAP) and its guanine nucleotide exchange factor have been identified recently. However, it remains uncertain whether these regulators drive the GTPase cycle of ARF1 autonomously or whether their activities can be regulated by other proteins. Here, we demonstrate that the intracellular KDEL receptor, ERD2, self-oligomerizes and interacts with ARF1 GAP, and thereby regulates the recruitment of cytosolic ARF1 GAP to membranes. Because ERD2 overexpression enhances the recruitment of GAP to membranes and results in a phenotype that reflects ARF1 inactivation, our findings suggest that ERD2 regulates ARF1 GAP, and thus regulates ARF1-mediated transport.  相似文献   

8.
Zhang C  Yu Y  Zhang S  Liu M  Xing G  Wei H  Bi J  Liu X  Zhou G  Dong C  Hu Z  Zhang Y  Luo L  Wu C  Zhao S  He F 《Genomics》2000,63(3):400-408
We have identified and characterized a novel human ADP-ribosylation factor GTPase-activating protein (ARFGAP1) gene that is related to other members of the ARF GAP family. The full-length cDNA for human ARFGAP1 was cloned following the identification of an EST obtained by large-scale cDNA library sequencing through a Blast search of public databases. Structurally, ARFGAP1 encodes a polypeptide of 516 amino acids, which contained a typical GATA-1-type zinc finger motif (CXXCX(16)CXXC) with the four cysteine residues that are highly conserved among other members of the ARF GAP family. The conserved ARF GAP domain may emphasize the biological importance of this gene. The ARFGAP1 gene, which contained 16 exons ranging from 0.5 to 9.3 kb, was mapped to human chromosome 22q13.2-q13.3 using radiation hybridization and in silico analyses. ARFGAP1 is strongly expressed in endocrine glands and testis. Interestingly, the expression of ARFGAP1 in testis is about sixfold higher than that in ovary, indicating a possible role of ARFGAP1 in the physiological function of sperm. Expression of ARFGAP1 in four human fetal tissues and seven cancer cell lines was also detected.  相似文献   

9.
A hyphally regulated gene (HYR1) from the dimorphic human pathogenic fungus Candida albicans was isolated and characterized. Northern (RNA) analyses showed that the HYR1 mRNA was induced specifically in response to hyphal development when morphogenesis was stimulated by serum addition and temperature elevation, increases in both culture pH and temperature, or N-acetylglucosamine addition. The HYR1 gene sequence revealed a 937-codon open reading frame capable of encoding a protein with an N-terminal signal sequence, a C-terminal glycosylphosphatidylinositol-anchoring domain, 17 potential N glycosylation sites, and a large domain rich in serine and threonine (51% of 230 residues). These features are observed in many yeast cell wall proteins, but no homologs are present in the databases. In addition, Hyr1p contained a second domain rich in glycine, serine, and asparagine (79% of 239 residues). The HYR1 locus in C. albicans CAI4 was disrupted by "Ura-blasting," but the resulting homozygous delta hyr1/delta hyr1 null mutant displayed no obvious morphological phenotype. The growth rates for yeast cells and hyphae and the kinetics of germ tube formation in the null mutant were unaffected. Aberrant expression of HYR1 in yeast cells, when an ADH1-HYR1 fusion was used, did not stimulate hyphal formation in C. albicans or pseudohyphal growth in Saccharomyces cerevisiae. HYR1 appears to encode a nonessential component of the hyphal cell wall.  相似文献   

10.
11.
Faithful chromosome inheritance is a fundamental biological activity and errors contribute to birth defects and cancer progression. We have performed a P-element screen in Drosophila melanogaster with the aim of identifying novel candidate genes involved in inheritance. We used a "sensitized" minichromosome substrate (J21A) to screen approximately 3,000 new P-element lines for dominant effects on chromosome inheritance and recovered 78 Sensitized chromosome inheritance modifiers (Scim). Of these, 69 decreased minichromosome inheritance while 9 increased minichromosome inheritance. Fourteen mutations are lethal or semilethal when homozygous and all exhibit dramatic mitotic defects. Inverse PCR combined with genomic analyses identified P insertions within or close to genes with previously described inheritance functions, including wings apart-like (wapl), centrosomin (cnn), and pavarotti (pav). Further, lethal insertions in replication factor complex 4 (rfc4) and GTPase-activating protein 1 (Gap1) exhibit specific mitotic chromosome defects, discovering previously unknown roles for these proteins in chromosome inheritance. The majority of the lines represent mutations in previously uncharacterized loci, many of which have human homologs, and we anticipate that this collection will provide a rich source of mutations in new genes required for chromosome inheritance in metazoans.  相似文献   

12.
We recently characterized a novel protein, GIT1, that interacts with G protein-coupled receptor kinases and possesses ADP-ribosylation factor (ARF) GTPase-activating protein activity. A second ubiquitously expressed member of the GIT protein family, GIT2, has been identified in data base searches. GIT2 undergoes extensive alternative splicing and exists in at least 10 and potentially as many as 33 distinct forms. The longest form of GIT2 is colinear with GIT1 and shares the same domain structure, whereas one major splice variant prominent in immune tissues completely lacks the carboxyl-terminal domain. The other 32 potential variants arise from the independent alternative splicing of five internal regions in the center of the molecule but share both the amino-terminal ARF GTPase-activating protein domain and carboxyl-terminal domain. Both the long and short carboxyl-terminal variants of GIT2 are active as GTPase-activating proteins for ARF1, and both also interact with G protein-coupled receptor kinase 2 and with p21-activated kinase-interacting exchange factors complexed with p21-activated kinase but not with paxillin. Cellular overexpression of the longest variant of GIT2 leads to inhibition of beta(2)-adrenergic receptor sequestration, whereas the shortest splice variant appears inactive. Although GIT2 shares many properties with GIT1, it also exhibits both structural and functional diversity due to tissue-specific alternative splicing.  相似文献   

13.
Ras proteins associate with cellular membranes as a consequence of a series of posttranslational modifications of a C-terminal CAAX sequence that include prenylation and are thought to be required for biological activity. In Drosophila melanogaster, Ras1 is required for eye development. We found that Drosophila Ras1 is inefficiently prenylated as a consequence of a lysine in the A(1) position of its CAAX sequence such that a significant pool remains soluble in the cytosol. We used mosaic analysis with a repressible cell marker (MARCM) to assess if various Ras1 transgenes could restore photoreceptor fate to eye disc cells that are null for Ras1. Surprisingly, we found that whereas Ras1 with an enhanced efficiency of membrane targeting could not rescue the Ras1 null phenotype, Ras1 that was not at all membrane targeted by virtue of a mutation of the CAAX cysteine was able to fully rescue eye development. In addition, constitutively active Ras1(12V,C186S) not targeted to membranes produced a hypermorphic phenotype and stimulated mitogen-activated protein kinase (MAPK) signaling in S2 cells. We conclude that the membrane association of Drosophila Ras1 is not required for eye development.  相似文献   

14.
Neph proteins are evolutionarily conserved membrane proteins of the immunoglobulin superfamily that control the formation of specific intercellular contacts. Cell recognition through these proteins is essential in diverse cellular contexts such as patterning of the compound eye in Drosophila melanogaster, neuronal connectivity in Caenorhabditis elegans, and the formation of the kidney filtration barrier in mammals. Here we identify the PDZ and BAR domain protein PICK1 (protein interacting with C-kinase 1) as a Neph-interacting protein. Binding required dimerization of PICK1, was dependent on PDZ domain protein interactions, and mediated stabilization of Neph1 at the plasma membrane. Moreover, protein kinase C (PKCα) activity facilitated the interaction through releasing Neph proteins from their binding to the multidomain scaffolding protein zonula occludens 1 (ZO-1), another PDZ domain protein. In Drosophila, the Neph homologue Roughest is essential for sorting of interommatidial precursor cells and patterning of the compound eye. RNA interference-mediated knockdown of PICK1 in the Drosophila eye imaginal disc caused a Roughest destabilization at the plasma membrane and a phenotype that resembled rst mutation. These data indicate that Neph proteins and PICK1 synergistically regulate cell recognition and contact formation.  相似文献   

15.
16.
ADP ribosylation factor (ARF) is a ubiquitous 21-kDa GTP-binding protein in eucaryotes. ARF was first identified in animal cells as the protein factor required for the efficient ADP-ribosylation of the mammalian G protein Gs by cholera toxin in vitro. A gene (ARF1) encoding a protein homologous to mammalian ARF was recently cloned from Saccharomyces cerevisiae (Sewell and Kahn, Proc. Natl. Acad. Sci. USA, 85:4620-4624, 1988). We have found a second gene encoding ARF in S. cerevisiae, ARF2. The two ARF genes are within 28 centimorgans of each other on chromosome IV, and the proteins encoded by them are 96% identical. Disruption of ARF1 causes slow growth, cold sensitivity, and sensitivity to normally sublethal concentrations of fluoride ion in the medium. Disruption of ARF2 causes no detectable phenotype. Disruption of both genes is lethal; thus, ARF is essential for mitotic growth. The ARF1 and ARF2 proteins are functionally homologous, and the phenotypic differences between mutations in the two genes can be accounted for by the level of expression; ARF1 produces approximately 90% of total ARF. Among revertants of the fluoride sensitivity of an arf1 null mutation were ARF1-ARF2 fusion genes created by a gene conversion event in which the deleted ARF1 sequences were repaired by recombination with ARF2.  相似文献   

17.
Fluegel ML  Parker TJ  Pallanck LJ 《Genetics》2006,172(1):185-196
The molecular mechanisms by which dietary cholesterol is trafficked within cells are poorly understood. Previous work indicates that the NPC1 family of proteins plays an important role in this process, although the precise functions performed by this protein family remain elusive. We have taken a genetic approach to further explore the NPC1 family in the fruit fly Drosophila melanogaster. The Drosophila genome encodes two NPC1 homologs, designated NPC1a and NPC1b, that exhibit 42% and 35% identity to the human NPC1 protein, respectively. Here we describe the results of mutational analysis of the NPC1a gene. The NPC1a gene is ubiquitously expressed, and a null allele of NPC1a confers early larval lethality. The recessive lethal phenotype of NPC1a mutants can be partially rescued on a diet of high cholesterol or one that includes the insect steroid hormone 20-hydroxyecdysone. We also find that expression of NPC1a in the ring gland is sufficient to rescue the lethality associated with the loss of NPC1a and that cholesterol levels in NPC1a mutant larvae are unchanged relative to controls. Our results suggest that NPC1a promotes efficient intracellular trafficking of sterols in many Drosophila tissues including the ring gland where sterols must be delivered to sites of ecdysone synthesis.  相似文献   

18.
19.
We have previously isolated a novel Ras GTPase-activating protein (Ras GAP), Gap1m, from rat brain. Gap1mis considered to be a negative regulator of the Ras signaling pathways, like other Ras GAPs, neurofibromin, which is a gene product of the neurofibromatosis type I gene, and p120GAP. In this study we have isolated a human cDNA of this Gap and mapped the gene. The gene encodes a protein of 853 amino acids that shows 89% sequence identity to rat Gap1m. The human gene was mapped to chromosome 3 by PCR analysis on a panel of human–mouse hybrid cells. FISH analysis refined the location of the gene further to 3q22–q23.  相似文献   

20.
The mouse Surfeit locus contains six sequence-unrelated genes (Surf-1 to -6) arranged in the tightest gene cluster so far described for mammals. The organization and juxtaposition of five of the Surfeit genes (Surf-1 to -5) are conserved between mammals and birds, and this may reflect a functional or regulatory requirement for the gene clustering. We have undertaken an evolutionary study to determine whether the Surfeit genes are conserved and clustered in invertebrate genomes. Drosophila melanogaster and Caenorhabditis elegans homologs of the mouse Surf-4 gene, which encodes an integral membrane protein associated with the endoplasmic reticulum, have been isolated. The amino acid sequences of the Drosophila and C. elegans homologs are highly conserved in comparison with the mouse Surf-4 protein. In particular, a dilysine motif implicated in endoplasmic reticulum localization of the mouse protein is conserved in the invertebrate homologs. We show that the Drosophila Surf-4 gene, which is transcribed from a TATA-less promoter, is not closely associated with other Drosophila Surfeit gene homologs but rather is located upstream from sequences encoding a homolog of a yeast seryl-tRNA synthetase protein. There are at least two closely linked Surf-3/rpL7a genes or highly polymorphic alleles of a single Surf-3/rpL7a gene in the C. elegans genome. The chromosomal locations of the C. elegans Surf-1, Surf-3/rpL7a, and Surf-4 genes have been determined. In D. melanogaster the Surf-3/rpL7a, Surf-4, and Surf-5 gene homologs and in C. elegans the Surf-1, Surf-3/rpL7a, Surf-4, and Surf-5 gene homologs are located on completely different chromosomes, suggesting that any requirement for the tight clustering of the genes in the Surfeit locus is restricted to vertebrate lineages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号