首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The COP9 signalosome (CSN) is an evolutionarily conserved multiprotein complex with a role in the regulation of cullin-RING type E3 ubiquitin ligases (CRLs). CSN exerts its function on E3 ligases by deconjugating the ubiquitin-related protein NEDD8 from the CRL cullin subunit. Thereby, CSN has an impact on multiple CRL-dependent processes. In recent years, advances have been made in understanding the structural organisation and biochemical function of CSN: Crystal structure analysis and mass spectrometry-assisted studies have come up with first models of the pair-wise and complex interactions of the 8 CSN subunits. Based on the analysis of mutant phenotypes, it can now be taken as an accepted fact that – at least in plants –the major biochemical function of CSN resides in its deneddylation activity, which is mediated by CSN subunit 5 (CSN5). Furthermore, it could be demonstrated that CSN function and deneddylation are required but not essential for CRL-mediated processes, and models for the role of neddylation and deneddylation in controlling CRL activity are emerging. Significant advances have also been made in identifying pathways that are growth restricting in the Arabidopsis csn mutants. Recently it has been shown that a G2 phase arrest, possibly due to genomic instability, restricts growth in Arabidopsis csn mutants. This review provides an update on recent advances in understanding CSN structure and function and summarises the current knowledge on its role in plant development and cell cycle progression.  相似文献   

3.
The COP9 signalosome (CSN) is an eight subunit protein complex conserved in all higher eukaryotes. In Arabidopsis thaliana, the CSN regulates auxin response by removing the ubiquitin-like protein NEDD8/RUB1 from the CUL1 subunit of the SCFTIR1/AFB ubiquitin-ligase (deneddylation). Previously described null mutations in any CSN subunit result in the pleiotropic cop/det/fus phenotype and cause seedling lethality, hampering the study of CSN functions in plant development. In a genetic screen to identify enhancers of the auxin response defects conferred by the tir1-1 mutation, we identified a viable csn mutant of subunit 3 (CSN3), designated eta7/csn3-3. In addition to enhancing tir1-1 mutant phenotypes, the csn3-3 mutation alone confers several phenotypes indicative of impaired auxin signaling including auxin resistant root growth and diminished auxin responsive gene expression. Unexpectedly however, csn3-3 plants are not defective in either the CSN-mediated deneddylation of CUL1 or in SCFTIR1-mediated degradation of Aux/IAA proteins. These findings suggest that csn3-3 is an atypical csn mutant that defines a novel CSN or CSN3-specific function. Consistent with this possibility, we observe dramatic differences in double mutant interactions between csn3-3 and other auxin signaling mutants compared to another weak csn mutant, csn1-10. Lastly, unlike other csn mutants, assembly of the CSN holocomplex is unaffected in csn3-3 plants. However, we detected a small CSN3-containing protein complex that is altered in csn3-3 plants. We hypothesize that in addition to its role in the CSN as a cullin deneddylase, CSN3 functions in a distinct protein complex that is required for proper auxin signaling.  相似文献   

4.
Cullin-RING ubiquitin ligases (CRLs) are critical regulators of multiple developmental and cellular processes in eukaryotes. CAND1 is a biochemical inhibitor of CRLs, yet has been shown to promote CRL activity in plant and mammalian cells. Here we analyze CAND1 function in the context of a developing metazoan organism. Caenorhabditis elegans CAND-1 is capable of binding to all of the cullins, and we show that it physically interacts with CUL-2 and CUL-4 in vivo. The covalent attachment of the ubiquitin-like protein Nedd8 is required for cullin activity in animals and plants. In cand-1 mutants, the levels of the neddylated isoforms of CUL-2 and CUL-4 are increased, indicating that CAND-1 is a negative regulator of cullin neddylation. cand-1 mutants are hypersensitive to the partial loss of cullin activity, suggesting that CAND-1 facilitates CRL functions. cand-1 mutants exhibit impenetrant phenotypes, including developmental arrest, morphological defects of the vulva and tail, and reduced fecundity. cand-1 mutants share with cul-1 and lin-23 mutants the phenotypes of supernumerary seam cell divisions, defective alae formation, and the accumulation of the SCFLIN-23 target the glutamate receptor GLR-1. The observation that cand-1 mutants have phenotypes associated with the loss of the SCFLIN-23 complex, but lack phenotypes associated with other specific CRL complexes, suggests that CAND-1 is differentially required for the activity of distinct CRL complexes.  相似文献   

5.
The COP9 signalosome (CSN) is a conserved eukaryotic protein complex implicated in the regulation of cullin-RING type E3 ubiquitin ligases by cleaving the small peptide RUB/Nedd8 from cullins. However, detailed analysis of CSN physiological functions in Arabidopsis has been hampered by the early seedling-lethality of csn null mutants. We and others have now identified a number of viable hypomorphic csn mutants which start to reveal novel CSN-dependent activities in adult Arabidopsis plants.1 Here, we present a detailed comparative analysis of the csn5a-1 and csn2-5 mutants as a mean to improve understanding of CSN functions in plant cells. Our observations point to CSN-independent activities of CSN5 and suggest a role of the CSN in cytoskeleton assembly/organization.Key words: Arabidopsis, root skewing, CSN, COP9 signalosome, SCF, ubiquitin, TIR1, auxin  相似文献   

6.
The Arabidopsis SLY1 (SLEEPY1) gene positively regulates gibberellin (GA) signaling. Positional cloning of SLY1 revealed that it encodes a putative F-box protein. This result suggests that SLY1 is the F-box subunit of an SCF E3 ubiquitin ligase that regulates GA responses. The DELLA domain protein RGA (repressor of ga1-3) is a repressor of GA response that appears to undergo GA-stimulated protein degradation. RGA is a potential substrate of SLY1, because sly1 mutations cause a significant increase in RGA protein accumulation even after GA treatment. This result suggests SCF(SLY1)-targeted degradation of RGA through the 26S proteasome pathway. Further support for this model is provided by the observation that an rga null allele partially suppresses the sly1-10 mutant phenotype. The predicted SLY1 amino acid sequence is highly conserved among plants, indicating a key role in GA response.  相似文献   

7.
8.
This article presents evidence that DELLA repression of gibberellin (GA) signaling is relieved both by proteolysis-dependent and -independent pathways in Arabidopsis thaliana. DELLA proteins are negative regulators of GA responses, including seed germination, stem elongation, and fertility. GA stimulates GA responses by causing DELLA repressor degradation via the ubiquitin-proteasome pathway. DELLA degradation requires GA biosynthesis, three functionally redundant GA receptors GIBBERELLIN INSENSITIVE DWARF1 (GID1a, b, and c), and the SLEEPY1 (SLY1) F-box subunit of an SCF E3 ubiquitin ligase. The sly1 mutants accumulate more DELLA proteins but display less severe dwarf and germination phenotypes than the GA biosynthesis mutant ga1-3 or the gid1abc triple mutant. Interestingly, GID1 overexpression rescued the sly1 dwarf and infertility phenotypes without decreasing the accumulation of the DELLA protein REPRESSOR OF ga1-3. GID1 rescue of sly1 mutants was dependent on the level of GID1 protein, GA, and the presence of a functional DELLA motif. Since DELLA shows increasing interaction with GID1 with increasing GA levels, it appears that GA-bound GID1 can block DELLA repressor activity by direct protein-protein interaction with the DELLA domain. Thus, a SLY1-independent mechanism for GA signaling may function without DELLA degradation.  相似文献   

9.
We previously reported that the SLEEPY1 (SLY1) homolog, F-box gene SNEEZY/SLEEPY2 (SNE/SLY2), can partly replace SLY1 in gibberellin (GA) hormone signaling through interaction with DELLAs RGA and GAI. To determine whether SNE normally functions in GA signaling, we characterized the phenotypes of two T-DNA alleles, sne-t2 and sne-t3. These mutations result in no apparent vegetative phenotypes, but do result in increased ABA sensitivity in seed germination. Double mutants sly1-t2 sne-t2 and sly1-t2 sne-t3 result in a significant decrease in plant fertility and final plant height compared to sly1-t2. The fact that sne mutations have an additive effect with sly1 suggests that SNE normally functions as a redundant positive regulator of GA signaling.Key words: gibberellin signaling, GA, SLEEPY1, SNEEZY, DELLA, F-box proteinThis paper describes genetic evidence that the SLEEPY1 (SLY1) homolog SNEEZY/SLEEPY2 (SNE/SLY2) functions redundantly with SLY1 to stimulate gibberellin signaling. GA responses such as seed germination, stem elongation and fertility are promoted by proteolysis of DELLA proteins, negative regulators of the GA signaling.1 In the classic GA signaling model, GA binding to the GA receptor GID1 increases GID1 affinity for DELLA protein. This GID1-GA binding to DELLA causes SLY1, the F-box subunit of an SCF E3 ubiquitin ligase complex, to recognize, bind and ubiquitinate DELLA proteins thereby targeting them for destruction by the 26S proteasome. Thus, loss of SLY1 function results in decreased GA responses, causing dwarfism, delayed flowering, infertility and seed dormancy. The sly1 mutants over-accumulate DELLA proteins due to failure to destroy them through the ubiquitin-proteasome pathway.Overexpression of the SLY1 homolog, SNE, partially rescues the germination, dwarfism and infertility of the sly1-10 mutant.24 SNE overexpression in the sly1-10 background is associated with reduced accumulation of DELLA proteins RGA and GAI, but not of DELLA RGL2. Co-immunoprecipitation assays demonstrated that SNE directly binds RGA protein as well as the cullin subunit of the SCF E3 complex. These recently published data suggest that SNE forms a functional SCF E3 ubiquitin ligase complex that negatively regulates a subset of the DELLA proteins regulated by SLY1.4The finding that SNE overexpression rescues sly1-10 phenotypes through down-regulation of DELLA RGA and GAI suggests that SNE is normally a positive regulator of GA signaling. If this is true, then we expect sne mutations to cause phenotypes resulting from reduced GA response including reduced germination, stature and fertility. To examine this hypothesis, three sne T-DNA mutants were identified: sne-t1, sne-t2 and sne-t3. The sne-t1 allele is a SALK line containing a T-DNA insertion 183-bp upstream of the coding region.5 This line showed no apparent phenotype and was not further characterized. The sne-t2 allele is a Sussman T-DNA line4,6 containing a T-DNA insertion immediately before the ATG that is the SNE translational start codon (Fig. 1A). While this insertion does not disrupt the coding region, it likely disrupts SNE protein translation as the T-DNA contains multiple stop codons. The sne-t3 allele contains a T-DNA insertion within the SNE ORF before amino acid 146 of the 157 amino acid predicted protein (FLAG_461E03).7,8 This allele should result in loss of the last 11 SNE amino acids. We know that loss of the last 8 SLY1 amino acids in sly1-10 results in dwarfism, suggesting that loss of the last 11 SNE amino acids may also cause some loss of function in the small F-box protein. When the homozygous sne-t2 and sne-t3 lines were compared to wild-type Ws, no change was observed either in final plant height or fertility measured in seeds/silique (Fig. 1B). An ABA dose-response curve in seed germination detected a small but reproducible increase in ABA sensitivity during seed germination of sne-t2 and sne-t3 (Fig. 1C). The fact that the sne-t2 and sne-t3 mutants, like sly1-2 and sly1-10, show increased ABA sensitivity suggests that SNE and SLY1 may have similar functions in GA signaling during seed germination.2Open in a separate windowFigure 1The phenotypes of sne-t2 and sne-t3 T-DNA mutants. (A) Schematic diagram of the sne-t2 T-DNA insertion at position −1 bp and of sne-t3 at position +435 bp with respect to the translation start site. (B) Final plant height (upper) and fertility (lower) of indicated genotypes. Letters indicate statistically different classes as determine by t-test. Bars represent standard error. (C) sne mutants show increase in ABA sensitivity. Seeds of wild-type Ws, sne-t2 and sne-t3 were after-ripened for 2 weeks then sown on MS-agar containing indicated concentrations of ABA as described by Steber et al.11 Germination was scored based on radical emergence after incubating 3 days at 4°C followed by 14 days at 22°C. (D) Mutations in SNE cause no significant effect on DELLA RGA, GAI and RGL2 protein accumulation. Total protein was extracted from leaves of 12-d-old seedlings (Top) or flower buds (FB, bottom) and detected as described in Ariizumi et al.4One possible explanation for the lack of apparent GA-insensitive phenotypes in sne T-DNA insertion lines, is that SNE function is redundant with SLY1 in GA signaling.9 If so, we would expect sly1 sne double mutants to show stronger GA-insensitive phenotypes than the sly1 single mutation. Double mutants were constructed containing either the sne-t2 or sne-t3 mutation in the sly-t2 null background. The sly1-t2 allele was chosen because sly1-t2, sne-t2 and sne-t3 are all in the Ws ecotype. The sly1-t2 allele contains a T-DNA insertion within the F-box domain resulting in severe GA-insensitive phenotypes including failure to germinate, reduced stature and infertility.10 The sly1-t2 sne-t2 and sly1-t2 sne-t3 double mutants showed a small but significant decrease in final plant height and fertility (seeds/silique) compared to sly1-t2 (Fig. 1B). This increase in phenotype severity was not associated with an apparent increase in DELLA RGA, GAI or RGL2 protein accumulation (Fig. 1D). It could be that DELLA protein levels in sly1-t2 are so high that any slight increase due to sne mutations is undetectable. Our previous study of SNE overexpression lines showed that SNE has the ability to downregulate RGA and GAI protein accumulation. Figure 1 shows that the chromosomal SNE gene contributes to GA signaling presumably through ubiquitination of DELLA protein.Taken together, the fact that sne mutants show only mild GA-insensitive phenotypes and that the natural SNE expression cannot compensate for lack of SLY1, indicate that SLY1 is the main E3 ubiquitin ligase stimulating GA signaling (this study, reviewed in ref. 4). We cannot rule out the possibility that stronger SNE alleles would show either stronger GA response phenotypes or phenotypes that are unrelated to GA signaling. Indeed, there is evidence to suggest that SNE may have unique functions. The sne-t3 (sne-1) allele results in a shortened root phenotype.8 That SNE is expressed in the endodermis and quiescent center of the root whereas SLY1 is expressed in the stele, suggests that SNE may function independently in the root.8 Moreover, SNE overexpression, but not SLY1 overexpression, results in decreased apical dominance and a prone growth habit suggesting that SNE may play a unique role in development.2,4 Our model is that in addition to regulating DELLA proteins RGA and GAI, SNE may also regulate a yet unidentified target involved in apical dominance (Fig. 2). Future research will need to elucidate the role of SNE in Arabidopsis growth and development.Open in a separate windowFigure 2Model for SNE function in Arabidopsis. Both SLY1 and SNE act as positive regulators of GA responses via DELLA protein destruction. SNE may negatively regulate an unknown protein that maintains apical dominance.  相似文献   

10.
Cryptochromes are blue light photoreceptors that mediate various light responses in plants and mammals. In Arabidopsis (Arabidopsis thaliana), cryptochrome 1 (CRY1) mediates blue light-induced photomorphogenesis, which is characterized by reduced hypocotyl elongation and enhanced anthocyanin production, whereas gibberellin (GA) signaling mediated by the GA receptor GA-INSENSITIVE DWARF1 (GID1) and DELLA proteins promotes hypocotyl elongation and inhibits anthocyanin accumulation. Whether CRY1 control of photomorphogenesis involves regulation of GA signaling is largely unknown. Here, we show that CRY1 signaling involves the inhibition of GA signaling through repression of GA-induced degradation of DELLA proteins. CRY1 physically interacts with DELLA proteins in a blue light-dependent manner, leading to their dissociation from SLEEPY1 (SLY1) and the inhibition of their ubiquitination. Moreover, CRY1 interacts directly with GID1 in a blue light-dependent but GA-independent manner, leading to the inhibition of the interaction between GID1 with DELLA proteins. These findings suggest that CRY1 controls photomorphogenesis through inhibition of GA-induced degradation of DELLA proteins and GA signaling, which is mediated by CRY1 inhibition of the interactions of DELLA proteins with GID1 and SCFSLY1, respectively.

Blue light-dependent interactions of CRY1 with GID1 and DELLA proteins inhibit gibberellin (GA)-induced degradation of DELLA proteins to regulate GA signaling and photomorphogenesis.  相似文献   

11.
The SLEEPY1 (SLY1) F-box gene is a positive regulator of gibberellin (GA) signaling in Arabidopsis (Arabidopsis thaliana). Loss of SLY1 results in GA-insensitive phenotypes including dwarfism, reduced fertility, delayed flowering, and increased seed dormancy. These sly1 phenotypes are partially rescued by overexpression of the SLY1 homolog SNEEZY (SNE)/SLY2, suggesting that SNE can functionally replace SLY1. GA responses are repressed by DELLA family proteins. GA relieves DELLA repression when the SCF(SLY1) (for Skp1, Cullin, F-box) E3 ubiquitin ligase ubiquitinates DELLA protein, thereby targeting it for proteolysis. Coimmunoprecipitation experiments using constitutively expressed 35S:hemagglutinin (HA)-SLY1 and 35S:HA-SNE translational fusions in the sly1-10 background suggest that SNE can function similarly to SLY1 in GA signaling. Like HA-SLY1, HA-SNE interacted with the CULLIN1 subunit of the SCF complex, and this interaction required the F-box domain. Like HA-SLY1, HA-SNE coimmunoprecipitated with the DELLA REPRESSOR OF GA1-3 (RGA), and this interaction required the SLY1 or SNE carboxyl-terminal domain. Whereas HA-SLY1 overexpression resulted in a decrease in both DELLA RGA and RGA-LIKE2 (RGL2) protein levels, HA-SNE caused a decrease in DELLA RGA but not in RGL2 levels. This suggests that one reason HA-SLY1 is able to effect a stronger rescue of sly1-10 phenotypes than HA-SNE is because SLY1 regulates a broader spectrum of DELLA proteins. The FLAG-SLY1 fusion protein was found to coimmunoprecipitate with the GA receptor HA-GA-INSENSITIVE DWARF1b (GID1b), supporting the model that SLY1 regulates DELLA through interaction with the DELLA-GA-GID1 complex.  相似文献   

12.
The synaptonemal complex (SC) is a conserved protein structure that holds homologous chromosome pairs together throughout much of meiotic prophase I. It is essential for the formation of crossovers, which are required for the proper segregation of chromosomes into gametes. The assembly of the SC is likely to be regulated by post-translational modifications. The CSN/COP9 signalosome has been shown to act in many pathways, mainly via the ubiquitin degradation/proteasome pathway. Here we examine the role of the CSN/COP9 signalosome in SC assembly in the model organism C. elegans. Our work shows that mutants in three subunits of the CSN/COP9 signalosome fail to properly assemble the SC. In these mutants, SC proteins aggregate, leading to a decrease in proper pairing between homologous chromosomes. The reduction in homolog pairing also results in an accumulation of recombination intermediates and defects in repair of meiotic DSBs to form the designated crossovers. The effect of the CSN/COP9 signalosome mutants on synapsis and crossover formation is due to increased neddylation, as reducing neddylation in these mutants can partially suppress their phenotypes. We also find a marked increase in apoptosis in csn mutants that specifically eliminates nuclei with aggregated SC proteins. csn mutants exhibit defects in germline proliferation, and an almost complete pachytene arrest due to an inability to activate the MAPK pathway. The work described here supports a previously unknown role for the CSN/COP9 signalosome in chromosome behavior during meiotic prophase I.  相似文献   

13.
Cycle inhibiting factor (Cif) is produced by pathogenic intracellular bacteria and injected into the host cells via a type III secretion system. Cif is known to interfere with the eukaryotic cell cycle by inhibiting the function of cullin RING E3 ubiquitin ligases (CRLs). Cullin proteins form the scaffold protein of CRLs and are modified with the ubiquitin-like protein Nedd8, which exerts important conformational control required for CRL activity. Cif has recently been shown to catalyze the deamidation of Gln40 in Nedd8 to Glu. Here, we addressed how Nedd8 deamidation inhibits CRL activity. Our results indicate that Burkholderia pseudomallei Cif (also known as CHBP) inhibits the deconjugation of Nedd8 in vivo by inhibiting binding of the deneddylating COP9 signalosome (CSN) complex. We provide evidence that the reduced binding of CSN and the inhibition of CRL activity by Cif are due to interference with Nedd8-induced conformational control, which is dependent on the interaction between the Nedd8 hydrophobic patch and the cullin winged-helix B subdomain. Of note, mutation of Gln40 to Glu in ubiquitin, an additional target of Cif, inhibits the interaction between the hydrophobic surface of ubiquitin and the ubiquitin-binding protein p62/SQSTM1, showing conceptually that Cif activity can impair ubiquitin/ubiquitin-like protein non-covalent interactions. Our results also suggest that Cif may exert additional cellular effects by interfering with the association between ubiquitin and ubiquitin-binding proteins.  相似文献   

14.
Cullin RING ligases (CRLs) are the largest family of cellular E3 ubiquitin ligases and mediate polyubiquitination of a number of cellular substrates. CRLs are activated via the covalent modification of the cullin protein with the ubiquitin-like protein Nedd8. This results in a conformational change in the cullin carboxy terminus that facilitates the ubiquitin transfer onto the substrate. COP9 signalosome (CSN)-mediated cullin deneddylation is essential for CRL activity in vivo. However, the mechanism through which CSN promotes CRL activity in vivo is currently unclear. In this paper, we provide evidence that cullin deneddylation is not intrinsically coupled to substrate polyubiquitination as part of the CRL activation cycle. Furthermore, inhibiting substrate-receptor autoubiquitination is unlikely to account for the major mechanism through which CSN regulates CRL activity. CSN also did not affect recruitment of the substrate-receptor SPOP to Cul3, suggesting it may not function to facilitate the exchange of Cul3 substrate receptors. Our results indicate that CSN binds preferentially to CRLs in the neddylation-induced, active conformation. Binding of the CSN complex to active CRLs may recruit CSN-associated proteins important for CRL regulation. The deneddylating activity of CSN would subsequently promote its own dissociation to allow progression through the CRL activation cycle.  相似文献   

15.
The human immunodeficiency virus type 1 (HIV-1) accessory protein, Vpr, interacts with several host cellular proteins including uracil DNA glycosylase-2 (UNG2) and a cullin-RING E3 ubiquitin ligase assembly (CRL4DCAF1). The ligase is composed of cullin 4A (CUL4A), RING H2 finger protein (RBX1), DNA damage-binding protein 1 (DDB1), and a substrate recognition subunit, DDB1- and CUL4-associated factor 1 (DCAF1). Here we show that recombinant UNG2 specifically interacts with Vpr, but not with Vpx of simian immunodeficiency virus, forming a heterotrimeric complex with DCAF1 and Vpr in vitro as well as in vivo. Using reconstituted CRL4DCAF1 and CRL4DCAF1-Vpr E3 ubiquitin ligases in vitro reveals that UNG2 ubiquitination (ubiquitylation) is facilitated by Vpr. Co-expression of DCAF1 and Vpr causes down-regulation of UNG2 in a proteasome-dependent manner, with Vpr mutants that are defective in UNG2 or DCAF1 binding abrogating this effect. Taken together, our results show that the CRL4DCAF1 E3 ubiquitin ligase can be subverted by Vpr to target UNG2 for degradation.  相似文献   

16.
The COP9 signalosome (CSN) was originally identified based on the constitutively photomorphogenic/de-etiolated/fusca (cop/det/fus) mutants from Arabidopsis thaliana. CSN is evolutionary conserved, and its subunit 5 (CSN5) mediates the deconjugation of NEDD8 from the cullin subunit of E3 ubiquitin ligases (deneddylation). Here, we report on Arabidopsis mutants deficient in CSN5 function. We show that these mutants are phenotypically indistinguishable from the previously described cop/det/fus mutants of other CSN subunits. However, we also show that these mutants retain the CSN complex (lacking CSN5), and this finding is in contrast with the previously described CSN subunit mutants, which lack the CSN complex. We therefore conclude that loss of CSN5 as part of CSN is sufficient to cause the cop/det/fus mutant phenotype. Furthermore, we show that mutants defective in CSN5 as well as mutants defective in CSN are unable to deneddylate the Arabidopsis cullins AtCUL1, AtCUL3A, and AtCUL4. Because these are representative cullin subunits of the three cullin-containing E3 families present in Arabidopsis, we postulate that the cop/det/fus mutant phenotype may be the result of the defects caused by impaired CSN5-dependent deneddylation of cullin-containing E3s.  相似文献   

17.
Dill A  Thomas SG  Hu J  Steber CM  Sun TP 《The Plant cell》2004,16(6):1392-1405
The nuclear DELLA proteins are highly conserved repressors of hormone gibberellin (GA) signaling in plants. In Arabidopsis thaliana, GA derepresses its signaling pathway by inducing proteolysis of the DELLA protein REPRESSOR OF ga1-3 (RGA). SLEEPY1 (SLY1) encodes an F-box-containing protein, and the loss-of-function sly1 mutant has a GA-insensitive dwarf phenotype and accumulates a high level of RGA. These findings suggested that SLY1 recruits RGA to the SCFSLY1 E3 ligase complex for ubiquitination and subsequent degradation by the 26S proteasome. In this report, we provide new insight into the molecular mechanism of how SLY1 interacts with the DELLA proteins for controlling GA response. By yeast two-hybrid and in vitro pull-down assays, we demonstrated that SLY1 interacts directly with RGA and GA INSENSITIVE (GAI, a closely related DELLA protein) via their C-terminal GRAS domain. The rga and gai null mutations additively suppressed the recessive sly1 mutant phenotype, further supporting the model that SCFSLY1 targets both RGA and GAI for degradation. The N-terminal DELLA domain of RGA previously was shown to be essential for GA-induced degradation. However, we found that this DELLA domain is not required for protein-protein interaction with SLY1 in yeast (Saccharomyces cerevisiae), suggesting that its role is in a GA-triggered conformational change of the DELLA proteins. We also identified a novel gain-of-function sly1-d mutation that increased GA signaling by reducing the levels of the DELLA protein in plants. This effect of sly1-d appears to be caused by an enhanced interaction between sly1-d and the DELLA proteins.  相似文献   

18.
Cullin RING ligases (CRLs) constitute the largest family of ubiquitin ligases with diverse cellular functions. Conjugation of the ubiquitin-like molecule Nedd8 to a conserved lysine residue on the cullin scaffold is essential for the activity of CRLs. Using structural studies and in vitro assays, it has been demonstrated that neddylation stimulates CRL activity through conformational rearrangement of the cullin C-terminal winged-helix B domain and Rbx1 RING subdomain from a closed architecture to an open and dynamic structure, thus promoting ubiquitin transfer onto the substrate. Here, we tested whether the proposed mechanism operates in vivo in intact cells and applies to other CRL family members. To inhibit cellular neddylation, we used a cell line with tetracycline-inducible expression of a dominant-negative form of the Nedd8 E2 enzyme or treatment of cells with the Nedd8 E1 inhibitor MLN4924. Using these cellular systems, we show that different mutants of Cul2 and Cul3 and of Rbx1 that confer increased Rbx1 flexibility mimic neddylation and rescue CRL activity in intact cells. Our findings indicate that in vivo neddylation functions by inducing conformational changes in the C-terminal domain of Cul2 and Cul3 that free the RING domain of Rbx1 and bridge the gap for ubiquitin transfer onto the substrate.  相似文献   

19.
20.
The COP9 signalosome (CSN) is required for the full activity of cullin-RING E3 ubiquitin ligases (CRLs) in eukaryotes. CSN exerts its function on CRLs by removing the ubiquitin-related NEDD8 conjugate from the cullin subunit of CRLs. CSN seems, thereby, to control CRL disassembly or CRL subunit stability. In Arabidopsis thaliana, loss of CSN function leads to constitutive photomorphogenic (cop) seedling development and a post-germination growth arrest. The underlying molecular cause of this growth arrest is currently unknown. Here, we show that Arabidopsis csn mutants are delayed in G2 phase progression. This cell cycle arrest correlates with the induction of the DNA damage response pathway and is suggestive of the activation of a DNA damage checkpoint. In support of this hypothesis, we detected gene conversion events in csn mutants that are indicative of DNA double-strand breaks. DNA damage is also apparent in mutants of the NEDD8 conjugation pathway and in mutants of the E3 ligase subunits CULLIN4, COP1 and DET1, which share phenotypes with csn mutants. In summary, our data suggest that Arabidopsis csn mutants undergo DNA damage, which might be the cause of the delay in G2 cell cycle progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号