首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Antibiotic resistance is a problem of deep scientific concern both in hospital and community settings. Rapid detection in clinical laboratories is essential for the judicious recognition of antimicrobial resistant organisms. Production of extended-spectrum β-lactamases (ESBLs) is a significant resistance-mechanism that impedes the antimicrobial treatment of infections caused by Enterobacteriaceae and is a serious threat to the currently available antibiotic armory. ESBLs are classified into several groups according to their amino acid sequence homology. Proper infection control practices and barriers are essential to prevent spread and outbreaks of ESBL producing bacteria. As bacteria have developed different strategies to counter the effects of antibiotics, the identification of the resistance mechanism may help in the discovery and design of new antimicrobial agents. The carbapenems are widely regarded as the drugs of choice for the treatment of severe infections caused by ESBL-producing Enterobacteriaceae, although comparative clinical trials are scarce. Hence, more expeditious diagnostic testing of ESBL-producing bacteria and the feasible modification of guidelines for community-onset bacteremia associated with different infections are prescribed.  相似文献   

2.
鲍曼不动杆菌为不动杆菌属中最常见的一种革兰阴性杆菌,同时也是医院获得性感染的主要致病菌之一。由于其广泛的耐药性,普通抗生素对其治疗效果已不明显。近年来,国内外学者尝试通过研制抗菌疫苗的手段来防治鲍曼不动杆菌感染,主要有灭活全菌体疫苗、外膜囊泡、重组蛋白亚单位疫苗、荚膜多糖候选疫苗、联合疫苗等。现就鲍曼不动杆菌疫苗的研究进展进行了综述。  相似文献   

3.
鲍曼不动杆菌烈性噬菌体的分离与纯化   总被引:1,自引:0,他引:1  
梁莉  杨洪江  金鑫 《生物学杂志》2010,27(4):88-90,93
利用柱层析方法,纯化鲍曼不动杆菌(Acinetobacter baumannii)烈性噬菌体AB1。首先采用聚乙二醇6000沉淀方法,初步分离裂解液中的噬菌体,噬菌体纯度由6.1×1010 pfu/mg提高到37×1010 pfu/mg,噬菌体回收率为58.8%,蛋白质去除率为90.6%;噬菌体粗提样品经Sepharose 4B凝胶过滤层析柱进一步纯化,纯度提高到73×1010 pfu/mg,噬菌体回收率为95.7%,蛋白质去除率为48.1%;收集的噬菌体样品最后经DEAE-52阴离子交换层析柱处理,噬菌体纯度为40×1010 pfu/mg,回收率为50.8%,蛋白去除率15.6%。内毒素分析结果显示,Sepharose 4B凝胶过滤层析纯化的噬菌体样品中,内毒素含量为443.8 EU/mg,而DEAE-52阴离子交换层析纯化的噬菌体样品中,内毒素含量为544.4 EU/mg。实验结果显示,PEG沉淀方法与Sepharose 4B凝胶过滤方法能够有效地提高噬菌体纯度,而DEAE-52阴离子交换层析则不能提高噬菌体的纯度,也无法有效地去除样品中的内毒素。  相似文献   

4.
5.
Extended spectrum beta-lactamases (ESBLs) confer bacterial resistance to third-generation cephalosporins, such as cefotaxime and ceftazidime, increasing hospital mortality rates. Whereas these antibiotics are almost impervious to classic beta-lactamases, such as TEM-1, ESBLs have one to four orders greater activity against them. The origins of this activity have been widely studied for the TEM and SHV-type ESBLs, but have received less attention for the CTX-M beta-lactamases, an emerging family that is now the dominant ESBL in several regions. To understand how CTX-M beta-lactamases achieve their remarkable activity, biophysical and structural studies were undertaken. Using reversible, two-state thermal denaturation, it was found that as these enzymes evolve a broader substrate range, they sacrifice stability. Thus, the mutant enzyme CTX-M-16 is eightfold more active against ceftazidime than the pseudo-wild-type CTX-M-14 but is 1.9 kcal/mol less stable. This is consistent with a "stability-activity tradeoff," similar to that observed in the evolution of other resistance enzymes. To investigate the structural basis of enzyme activity and stability, the structures of four CTX-M enzymes were determined by X-ray crystallography. The structures of CTX-M-14, CTX-M-27, CTX-M-9 and CTX-M-16 were determined to 1.10 Angstroms, 1.20 Angstroms, 0.98 Angstroms and 1.74 Angstroms resolution, respectively. The enzyme active sites resemble those of the narrow-spectrum TEM-1 and SHV-1, and not the enlarged sites typical of ESBL mutants such as TEM-52 and TEM-64. Instead, point substitutions leading to specific interactions may be responsible for the improved activity against ceftazidime and cefotaxime, consistent with observations first made for the related Toho-1 enzyme. The broadened substrate range of CTX-M-16 may result from coupled defects in the enzyme's B3 strand, which lines the active site. Substitutions Val231-->Ala and Asp240-->Gly, which convert CTX-M-14 into CTX-M-16, occur at either end of this strand. These defects appear to increase the mobility of B3 based on anisotropic B-factor analyses at ultrahigh resolution, consistent with stability loss and activity gain. The unusually high resolution of these structures that makes such analyses possible also makes them good templates for inhibitor discovery.  相似文献   

6.
The presence of Acinetobacter baumannii outside hospitals is still a controversial issue. The objective of our study was to explore the extrahospital epidemiology of A. baumannii in Lebanon. From February 2012 to October 2013, a total of 73 water samples, 51 soil samples, 37 raw cow milk samples, 50 cow meat samples, 7 raw cheese samples, and 379 animal samples were analyzed by cultural methods for the presence of A. baumannii. Species identification was performed by rpoB gene sequencing. Antibiotic susceptibility was investigated, and the A. baumannii population was studied by two genotyping approaches: multilocus sequence typing (MLST) and blaOXA-51 sequence-based typing (SBT). A. baumannii was detected in 6.9% of water samples, 2.7% of milk samples, 8.0% of meat samples, 14.3% of cheese samples, and 7.7% of animal samples. All isolates showed a susceptible phenotype against most of the antibiotics tested and lacked carbapenemase-encoding genes, except one that harbored a blaOXA-143 gene. MLST analysis revealed the presence of 36 sequence types (STs), among which 24 were novel STs reported for the first time in this study. blaOXA-51 SBT showed the presence of 34 variants, among which 21 were novel and all were isolated from animal origins. Finally, 30 isolates had new partial rpoB sequences and were considered putative new Acinetobacter species. In conclusion, animals can be a potential reservoir for A. baumannii and the dissemination of new emerging carbapenemases. The roles of the novel animal clones identified in community-acquired infections should be investigated.  相似文献   

7.
鲍曼不动杆菌作为一种医院内感染的病原菌,因其易于引起各类感染且耐药性强而受到广泛关注。快速改造鲍曼不动杆菌基因组的工具可有效促进其耐药机制的研究。本文就近些年来适用于鲍曼不动杆菌的遗传操作方法进行了总结,包括各种外源基因转入方法(电转化、自然转化、接合转移)和基因改造技术(等位基因交换、DNA重组工程、转座突变),并对鲍曼不动杆菌的基因组编辑方法的改进作了初步展望。  相似文献   

8.
Gao F  Wang Y  Liu YJ  Wu XM  Lv X  Gan YR  Song SD  Huang H 《Journal of bacteriology》2011,193(9):2365-2366
Acinetobacter baumannii is a pathogenic species of bacteria, identified as an aerobic gram-negative bacterium, that is resistant to most antibiotics. In this study, the MDR-TJ strain was isolated at the Second Hospital of Tianjin Medical University, China, and was found to be resistant to penicillin, cephalosporins, aminoglycosides, quinolones, and also imipenem. The genome sequence of Acinetobacter baumannii strain MDR-TJ was determined by using a combination of 454 pyrosequencing and paired-end sequencing performed with the Roche Genome Sequencer FLX system to generate a scaffolded assembly.  相似文献   

9.
鲍曼不动杆菌是临床常见感染菌,耐药性日益增强。其多重耐药性与可长期存活性将导致菌膜的形成,而这种可以抵抗抗菌素治疗的菌膜有着复杂的机构,在复杂结构中起到形成菌膜、维持菌膜稳定性的两个重要组成部分为胞外多糖(EPS)和菌膜相关性蛋白(the biofilm-associated protein,Bap),促使鲍曼不动杆菌躲避宿主免疫系统的攻击,因此针对鲍曼不动杆菌的治疗也愈发困难。  相似文献   

10.
Acinetobacter baumannii BL88, an environmental isolate, was resistant to 13 metals and 10 antibiotics. Plumbagin cured resistance to silver, cadmium, antimony, streptomycin and ampicillin at varying frequencies. However, only silver resistance transferred (1 × 10–6 recepient–1) to Escherichia coli K12 during conjugation. Correspondingly there was transfer of a 54 kb plasmid (pUPI199) from A. baumannii BL88. The plasmid transformed E. coli DH5 cells at a frequency of 1 × 10–8 recepient–1. The growth rate of E. coli DH5; (pUPI199) was slower as compared with E. coli DH5. Plasmid pUPI199 was 76 and 9.6% stable in the host A. baumannii BL88 in the presence and absence of selection pressure, respectively. A. baumannii BL88 was found to accumulate and retain silver whereas E. coli DH5 (pUPI199) effluxed 63% of the accumulated silver ions.  相似文献   

11.
主动外排机制在鲍曼不动杆菌耐药性中的作用   总被引:2,自引:0,他引:2  
目的探讨细菌主动外排机制在临床分离的鲍曼不动杆菌耐药性中的作用。方法琼脂稀释法检测临床分离的鲍曼不动杆菌对常用抗生素的耐药性,测定经外排泵抑制剂碳酰氰基-对-氯苯腙(CCCP)处理前后鲍曼不动杆菌对抗生素最小抑菌浓度(MIC)的变化,以聚合酶链反应(PCR)、逆转录-聚合酶链反应(RT-PCR)检测多重耐药主动外排基因以出及其表达水平。结果临床分离的鲍曼不动杆菌对常用抗生素耐药率高且具有多重耐药性,并存在药物的主动外排。所有临床分离的菌株均能检测到adeB基因,但多重耐药株表达水平明显高于敏感株(P〈0.01)。结论临床分离的鲍曼不动杆菌的耐药性尤其是多重耐药性与外排泵介导的耐药机制密切相关。  相似文献   

12.
A new regulator gene named pltZ, which is located downstream of the plt gene cluster in the genome of Pseudomonas sp. M18, was identified, sequenced and characterized in this report. The deduced amino acid sequence of PltZ shares significant homology with other bacterial regulators in the TetR family. The chromosomal pltZ disruption mutant gave rise to 4.4-fold enhancement of pyoluteorin biosynthesis but did not exert significant influence on the accumulation of phenazine-1-carboxylic acid compared with the wild-type M18. The negative regulation of pltZ on pyoluteorin biosynthesis was further confirmed by multiplied pltZ gene dosage experiments and pltA'-'lacZ translational fusion analyses.  相似文献   

13.
目的探讨重症监护病房(ICU)耐碳青霉烯酶鲍曼不动杆菌(CRAB)之间的同源性,并了解是否存在耐药菌株的克隆流行。方法收集宁波大学附属医院ICU 2010年2月至2011年5月分离到的CRAB 40株,常规药敏试验采用K-B法。用脉冲场凝胶电泳(PFGE)分析其耐药株的同源性。结果阿米卡星的敏感率最高为100%,其次米诺环素敏感率为50%;PFGE结果显示,40株CRAB菌株分为A、B、C三型,A型22株,主要分离时段为2010年2月~3月(16株)和2011年1月-2011年2月(6株);B型16株,主要分离时段为2010年5月-6月(16株),C型为C1亚型和C2亚型各1株为散发型。结论调查期间CRAB主要的PFGE基因型为A型和B型菌株克隆流行,流行相关的克隆株可在病区长期生存,从而引起病区持续感染,需要积极采取感染控制措施;同时不同时段主要流行株由克隆株A变为克隆株B,推测同一个病区的流行基因型可能存在流行变迁。  相似文献   

14.
15.
The opportunistic human pathogen Acinetobacter baumannii is one of the leading causes of nosocomial infections. The high prevalence of multidrug-resistant strains, a high adaptability to changing environments and an overall pronounced stress resistance contribute to persistence and spread of the bacteria in hospitals and thereby promote repeated outbreaks. Altogether, the success of A. baumannii is mainly built on adaptation and stress resistance mechanisms, rather than relying on ‘true’ virulence factors. One of the stress factors that pathogens must cope with is osmolarity, which can differ between the external environment and different body parts of the human host. A. baumannii ATCC 19606T accumulates the compatible solutes glutamate, mannitol and trehalose in response to high salinities. In this work, it was found that most of the solutes vanish immediately after reaching stationary phase, a very unusual phenomenon. While glutamate can be metabolized, mannitol produced by MtlD is excreted to the medium in high amounts. First results indicate that A. baumannii ATCC 19606T undergoes a rapid switch to a dormant state (viable but non-culturable) after disappearance of the compatible solutes. Resuscitation from this state could easily be achieved in PBS or fresh medium.  相似文献   

16.
Identification of an OprD homologue in Acinetobacter baumannii   总被引:4,自引:0,他引:4  
With the increased number of resistant Acinetobacter baumannii strains, it is urgently required to decipher the molecular bases of outer membrane permeability. The analyses of the outer membrane from different A. baumannii strains indicated a modification in the expression of two proteins of 29 and 43 kDa, respectively. By electrophoresis and MALDI-MS analyses, the 43 kDa OMP was identified as a protein belonging to the OprD family, a basic amino acid and imipenem porin.  相似文献   

17.
鲍曼不动杆菌对碳青霉烯类抗生素耐药率逐年增高,其主要耐药机制包括产生水解药物的碳青霉烯酶,外膜孔蛋白的改变,主动外排系统的过度表达和青霉素结合蛋白改变等.其中由于苯唑西林酶(Oxaclillinase,OXA酶)克隆传播导致鲍曼不动杆菌对碳青霉烯类抗生素耐药的爆发流行的报道,已引起大家的广泛关注.本研究对耐碳青霉烯类鲍曼不动杆菌产OXA酶的研究现状作一阐述.  相似文献   

18.
Comparative genomics of multidrug resistance in Acinetobacter baumannii   总被引:3,自引:0,他引:3  
Acinetobacter baumannii is a species of nonfermentative gram-negative bacteria commonly found in water and soil. This organism was susceptible to most antibiotics in the 1970s. It has now become a major cause of hospital-acquired infections worldwide due to its remarkable propensity to rapidly acquire resistance determinants to a wide range of antibacterial agents. Here we use a comparative genomic approach to identify the complete repertoire of resistance genes exhibited by the multidrug-resistant A. baumannii strain AYE, which is epidemic in France, as well as to investigate the mechanisms of their acquisition by comparison with the fully susceptible A. baumannii strain SDF, which is associated with human body lice. The assembly of the whole shotgun genome sequences of the strains AYE and SDF gave an estimated size of 3.9 and 3.2 Mb, respectively. A. baumannii strain AYE exhibits an 86-kb genomic region termed a resistance island—the largest identified to date—in which 45 resistance genes are clustered. At the homologous location, the SDF strain exhibits a 20 kb-genomic island flanked by transposases but devoid of resistance markers. Such a switching genomic structure might be a hotspot that could explain the rapid acquisition of resistance markers under antimicrobial pressure. Sequence similarity and phylogenetic analyses confirm that most of the resistance genes found in the A. baumannii strain AYE have been recently acquired from bacteria of the genera Pseudomonas, Salmonella, or Escherichia. This study also resulted in the discovery of 19 new putative resistance genes. Whole-genome sequencing appears to be a fast and efficient approach to the exhaustive identification of resistance genes in epidemic infectious agents of clinical significance.  相似文献   

19.
Acinetobacter baumannii has emerged recently as a major cause of health care-associated infections due to the extent of its antimicrobial resistance and its propensity to cause large nosocomial outbreaks. Here we report the genome sequence of Acinetobacter baumannii TYTH-1 isolated in Taiwan during 2008.  相似文献   

20.
The opportunistic human pathogen Acinetobacter baumannii persists in the healthcare setting because of its ability to survive exposure to various antimicrobial and sterilization agents. A. baumannii’s ability to cause multiple infection types complicates diagnosis and treatment. Rapid detection of A. baumannii infections would likely improve treatment outcomes. Recently published Acinetobacter glycoproteomic data show the prevalence of O-linked glycoproteins, suggesting the possibility for an O-glycan-based detection technology. O-glycan biosynthesis is required for protein glycosylation and capsular polysaccharide production in A. baumannii. Recent publications demonstrate key roles for protein glycosylation and capsular polysaccharide in the pathogenicity of A. baumannii. Targeted antimicrobial development against O-glycan biosynthesis may produce new effective treatment options for A. baumannii infections. Here, we discuss how the data gathered through Acinetobacter glycoproteomics can be used to develop technologies for rapid diagnosis and reveal potential antimicrobial targets. In addition, we consider the efficacy of glycoconjugate vaccine development against A. baumannii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号