首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Treatment of Fundulus melanophores with adenosine 3′,5′-monophosphate (cyclic AMP) is followed by reversible melanin dispersion in these cells. Adenosine 3′-monophosphate and adenosine 5′-monophosphate both have a similar, but weaker dispersing action. In addition, adenosine 5′-monophosphate also has a melanin aggregating effect. These results are interpreted to mean that nerve transmitters may act by controlling the level of cyclic AMP within the Fundulus melanophore.  相似文献   

2.
Effect of adenosine on the level of guanosine 3′,5′-monophosphate in guinea pig cerebellar slices was investigated. Adenosine increased the concentration of guanosine 3′,5′-monophosphate in the slices 3–4-fold. Upon removal of adenosine from the medium, the concentration of guanosine 3′,5′-monophosphate returned to the initial level. AMP, ADP or ATP also increased the guanosine 3′,5′-monophosphate level to the same extent as adenosine, while adenine or other nucleotides were not effective. In the absence of Ca2+ in the incubation medium, adenosine did not increase the concentration of guanosine 3′,5′-monophosphate in cerebellar slices although level of adenosine 3′,5′-monophosphate was elevated by adenosine.Anticholinergic agents, adrenergic blocking agents or antihistaminics did not prevent the increase of guanosine 3′,5′-monophosphate by adenosine indicating that the effect of adenosine was not mediated by the release of neurotransmitters.The combination of adenosine with depolarizing agents showed an additive effect on the level of guanosine 3′,5′-monophosphate indicating that adenosine increased the level of guanosine 3′,5′-monophosphate by a different mechanism from the depolarization.  相似文献   

3.
Catalytic mechanism of orotidine 5′-monophosphate decarboxylase (OMPDC), one of the nature most proficient enzymes which provides large rate enhancement, has not been fully understood yet. A series of 30?ns molecular dynamics (MD) simulations were run on X-ray structure of the OMPDC from Saccharomyces cerevisiae in its free form as well as in complex with different ligands, namely 1-(5′-phospho-D-ribofuranosyl) barbituric acid (BMP), orotidine 5′-monophosphate (OMP), and 6-phosphonouridine 5′-monophosphate (PMP). The importance of this biological system is justified both by its high rate enhancement and its potential use as a target in chemotherapy. This work focuses on comparing two physicochemical states of the enzyme (protonated and deprotonated Asp91) and three ligands (substrate OMP, inhibitor, and transition state analog BMP and substrate analog PMP). Detailed analysis of the active site geometry and its interactions is properly put in context by extensive comparison with relevant experimental works. Our overall results show that in terms of hydrogen bond occupancy, electrostatic interactions, dihedral angles, active site configuration, and movement of loops, notable differences among different complexes are observed. Comparison of the results obtained from these simulations provides some detailed structural data for the complexes, the enzyme, and the ligands, as well as useful insights into the inhibition mechanism of the OMPDC enzyme. Furthermore, these simulations are applied to clarify the ambiguous mechanism of the OMPDC enzyme, and imply that the substrate destabilization and transition state stabilization contribute to the mechanism of action of the most proficient enzyme, OMPDC.  相似文献   

4.
The adenosine 3′,5′-monophosphate and guanosine 3′,5′-monophosphate contents of microliter quantities of urine can be determined simultaneously by combining individual protein binding assays for the two nucleotides. 32P-labeled adenosine 3′,5′-monophosphate is bound to a protein from bovine skeletal muscle, while a lobster muscle protein preparation is utilized for binding of 3H-labeled guanosine 3′,5′-monophosphate.  相似文献   

5.
Boris Janistyn 《Planta》1983,159(4):382-385
Gas chromatographic-mass spectroscopic evidence is presented for the presence of guanosine-3′: 5′-monophosphate (cGMP) in maize seedlings. The amount of cGMP (35–72 pmol g-1 fresh weight) was quantified as a tetra-silyl derivative using gas-chromatographic detection with reference to a silylated standard of authentic cGMP. Gas-chromatographic separation of tri-silyl adenosine-3′: 5′-monophosphate and tetra-silyl cGMP is demonstrated.  相似文献   

6.
Addition of 2-β-D-ribofuranosyl-thiazole-4-car?amide (NSC 286193, RTC, T-CAR) to Chinese hamster ovary (CHO) cells in culture drastically reduced the level of IMP dehydrogenase activity in the cell sonicate. Dialysis of the sonicate removed this inhibition. NSC 286193 was phosphorylated to the 5′-monophosphate in vitro in the presence of ATP and Mg++. The monophosphate was further converted to another compound in the presence of ATP and Mg++ which has been found to be a potent inhibitor of IMP-dehydrogenase. This metabolite is tentatively identified as thiazole-4-car?amide adenine dinucleotide.  相似文献   

7.
Although most microorganisms with genetic blocks in the purine nucleotide sequence excrete breakdown products, a coryneform bacterium was found to accumulate intact 5′-nucleotides in the extracellular medium. Adenineless mutants accumulated 0.4 to 0.6 g of inosine-5′-monophosphate per liter of broth. The yield of this nucleotide was increased to 0.8 to 0.9 g per liter when such mutants were mutated to xanthine dependence. Induction of a specific guanine requirement in adenineless auxotrophs resulted in cultures capable of producing high yields of xanthosine-5′-monophosphate (3 to 4 g per liter). Pure xanthosine-5′-monophosphate was isolated from broth by a procedure involving ion-exchange chromatography, charcoal adsorption, and barium precipitation.  相似文献   

8.
1,N6-etheno-2-aza-adenosine 3′,5′-monophosphate (cyclic 2-aza-?-AMP) has been shown to be a sensitive and an efficient substrate for the assay of cyclic-nucleotide phosphodiesterase. The relative activity is 75% compared to cyclic AMP. Two Km values of 503 and 15 μm were observed with the beef heart enzyme.  相似文献   

9.
Abstract

To examine the possibility that the mannose 6-phosphate receptor system might be capitalized upon to facilitate uptake of nucleotides or nucleotides into cell, adducts of mannose 6-phosphate with 5-iodo-2′-deoxyuridine 5′-monophosphate and with adenosine 5′-monophosphate, p5′A2′p5′A and p5′A2′p5′A2′p5′A were prepared and evaluated for their antiviral activities. The adducts with 2′,5′-oligoadenylates possessed no significant antiviral activity. The adduct with 5-iodo-2′-deoxyuridine 5′-monophosphate showed activity that could be fully explained by extracellular cleavage to free 5-iodo-2′-deoxyuridine.  相似文献   

10.
Formycin B, a pyrazolo(4,3-d)pyrimidine C-nucleoside, inhibited the growth of Leishmaniadonovani promastigotes in culture with an ED90 of 0.2 μg/ml. Promastigotes incubated for 24 hrs with Formycin B at 10 μg/ml were found to convert it to the ribonucleotide, formycin B 5′-monophosphate. The parasites were also capable of aminating formycin B 5′-monophosphate as evidenced by the appearance of formycin A di- and triphosphate. The RNA contained the formycin A moiety in 3′,5′-polynucleotide linkage. Succino-AMP synthetase from these parasites was able to use formycin B 5′-monophosphate as an alternate-substrate with a K'm of 26 μM and a V'm of about 1% the V'm IMP. Formycin B 5′-monophosphate was also a substrate for mammalian succino-AMP synthetase with a Vm' of 40% the Vm' of IMP.  相似文献   

11.
In vivo administration of glucagon caused an increase in the dissociation of protein kinase subunits which was accompanied by elevated adenosine 3′,5′-monophosphate concentrations in the rat liver. Concomitantly, there was a decrease in non saturated adenosine 3′,5′-monophosphate binding sites. A reduction in protein kinase activity measured in the presence of the cyclic nucleotide was apparent at 5 minutes of glucagon administration while enzyme activity assayed in the absence of adenosine 3′,5′-monophosphate was already increased after one minute. Glucose, given through an intragastric tube, caused no changes in the effect of glucagon on hepatic protein kinase.  相似文献   

12.
HPLC separation of ionic samples tends to be more complicated and difficult to understand than that of non-ionic compounds. On the other hand, band spacing is much more easily manipulated for ionic than for neutral samples. Ion-suppressing RP-HPLC method was used with organic modifier and aqueous buffer solution. In this work, five mononucleotides of cytidine-5-monophosphate (5′-CMP) disodium salt, uridine-5-monophosphate disodium salt (5′-UMP), guanosine-5-monophosphate disodium salt (5′-GMP), inosine-5-monophosphate disodium salt (5′-IMP), and adenosine-5-monophosphate disodium salt (5′-AMP) were examined. Acetic acid and sodium phosphate were used as buffers, and methanol as an organic modifier. A new relationship between the retention factor and the buffer concentration at a fixed modifier content (5% of methanol) could be expressed by fol|lowing:k=(k −1+k 0 (K B/K S)C B a)/(1+(K B/K S)C B a), whereC B was the concentration of buffer. Using this relationship, the calculated values closely matched the experimental data. The derived relationship showed that as the buffer concentration increased, the retention factor approached a certain value, and this was buffer dependent.  相似文献   

13.
Analogs of thymidine-5′-monophosphate, thymidine-5′-monophosphate-p-nitrophenylester, and adenosine-5′-monophosphate with an amino or azido group in the 3′-position have been synthesized by convenient methods. These compounds were tested as substrates for acid phosphatase from potatoes (EC 3.1.3.27), 5′-nucleotidase from snake venom (EC 3.1.3.5), alkaline phosphatase from calf intestine (EC 3.1.3.1), and phosphodiesterase from snake venom (EC 3.1.4.1). The influence of the modification was found to increase with the higher specificity of the enzymes (thus, e.g., 5′-nucleotidase does not accept the 3′-modified thymidine derivatives).  相似文献   

14.
Changes in the levels of adenosine 3′,5′-monophosphate (cyclic AMP) and guanosine 3′,5′-monophosphate (cyclic GMP) during development were studied in the Dipterous Ceratitis capitata. The developmental patterns were different to each other. Cyclic AMP showed a sharp maximum in the larval stage to decrease afterwards during adult development. Changes of cyclic GMP exhibited an opposite pattern, although its levels were always higher than those of cyclic AMP.  相似文献   

15.
Guanosine 3′:5′-monophosphate has a slight hydroosmotic effect on toad urinary bladder. Furthermore, this nucleotide strongly inhibits the responses to 3′:5′-adenosine monophosphate and oxytocin. The response to an increase in medium tonicity is not modified by the guanosine nucleotide. A role for guanosine 3′:5′-monophosphate in the regulation of water permeability in toad urinary bladder is proposed.  相似文献   

16.
17.
The cyclic adenosine 3′,5′-monophosphate (cyclic AMP) phosphodiesterase from human leukemic lymphocytes differes from the normal cell enzyme in having a much higher activity and a loss of inhibition by cyclic guanosine 3′,5′-monophosphate (cyclic GMP). In an effort to determine the mechanism of these alterations, we have studied this enzyme in a model system, lectin-stimulated normal human lymphocytes. Following stimulation of cells with concanavalin A (con A) the enzyme activity gradually becomes altered, until it fully resembles the phosphodiesterase found in leukemic lymphocytes. The changes in the enzyme parallel cell proliferation as measured by increases in thymidine incorporation into DNA. The addition of a guanylate cyclase inhibitor preparation from the bitter melon prevents both the changes in the phosphodiesterase and the thymidine incorporation into DNA. This blockage can be partially reversed by addition of 8-bromo cyclic guanosine 3′,5′-monophosphate (8-bromo cyclic GMP) to the con A-stimulated normal lymphocytes. These results indicate a possible role of cyclic GMP in a growth related alteration of cyclic AMP phosphodiesterase.  相似文献   

18.
ABSTRACT

To measure amino acid concentrations with high sensitivity, the pyrophosphate amplification reaction conditions of histidyl-tRNA synthetase (HisRS) and tyrosyl-tRNA synthetase (TyrRS) were examined. The amount of pyrophosphate produced by reactions involving HisRS and TyrRS was amplified compared with the amount of the initial substrate L-amino acid after the addition of excess adenosine-5′-triphosphate and magnesium ions, with incubation at 50°C in an alkaline pH. The amount of pyrophosphate produced in the HisRS and TyrRS reactions was approximately 24- and 16-fold higher than the initial amount of L-His and L-Tyr, respectively. The pyrophosphate amplification reactions involving HisRS and TyrRS showed high substrate specificity for L-His and L-Tyr, respectively. Products of pyrophosphate amplification were identified as p1, p4-di(adenosine) 5′-tetraphosphate, and adenosine-5′-monophosphate using high-performance liquid chromatography. A strong positive correlation was observed for 0 to 50 μM of L-His and L-Tyr in the pyrophosphate amplification reaction (R = 0.98 and R = 1.00, respectively).

Abbreviations: L-His: L-histidine; L-Tyr: L-tyrosine; aaRSs: aminoacyl-tRNA synthetases; ATP: adenosine-5′-triphosphate; aminoacyl-AMP-aaRS: aminoacyl-adenylate intermediate; Ap4A, P1, P4-di(adenosine) 5?-tetraphosphate; AMP: adenosine-5′-monophosphate; PAR: pyrophosphate amplification rate  相似文献   

19.
The levels of adenosine 3′,5′-monophosphate, guanosine 3′-5′-monophosphate and the activities of their respective phosphodiesterases exhibited changes during development ofMyxococcus xanthus that are substantially consistent with role postulated for each in a previously proposed model.  相似文献   

20.
The germination of spores of Mucor rouxii into hyphae was inhibited by 2 mm dibutyryl cyclic adenosine 3′,5′-monophosphate or 7 mm cyclic adenosine 3′,5′-monophosphate; under these conditions spores developed into budding spherical cells instead of filaments, provided that glucose was present in the culture medium. Removal of the cyclic nucleotides resulted in the conversion of yeast cells into hyphae. Dibutyryl cyclic adenosine 3′,5′-monophosphate (2 mm) also inhibited the transformation of yeast to mycelia after exposure of yeast culture to air.Since in all living systems so far studied adenylate cyclase and cyclic adenosine 3′,5′-monophosphate phosphodiesterase are involved in maintaining the intracellular cyclic adenosine monophosphate level, the activity of both enzymes and the intracellular concentration of cyclic adenosine monophosphate were investigated in yeast and mycelium extracts. Cyclic adenosine monophosphate phosphodiesterase and adenylate cyclase activities could be demonstrated in extracts of M. rouxii. The specific activity of adenylate cyclase did not vary appreciably with the fungus morphology. On the contrary, cyclic adenosine monophosphate phosphodiesterase activity was four- to sixfold higher in mycelial extracts than in yeast extracts and reflected quite accurately the observed changes in intracellular cyclic adenosine monophosphate levels; these were three to four times higher in yeast cells than in mycelium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号