首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Loss of estrogen receptor α (ERα) expression and gain of TWIST (TWIST1) expression in breast tumors correlate with increased disease recurrence and metastasis and poor disease-free survival. However, the molecular and functional regulatory relationship between TWIST and ERα are unclear. In this study, we found TWIST was associated with a chromatin region in intron 7 of the human ESR1 gene coding for ERα. This association of TWIST efficiently recruited the nucleosome remodeling and deacetylase (NuRD) repressor complex to this region, which subsequently decreased histone H3K9 acetylation, increased histone H3K9 methylation and repressed ESR1 expression in breast cancer cells. In agreement with these molecular events, TWIST expression was inversely correlated with ERα expression in both breast cancer cell lines and human breast ductal carcinomas. Forced expression of TWIST in TWIST-negative and ERα-positive breast cancer cells such as T47D and MCF-7 cells reduced ERα expression, while knockdown of TWIST in TWIST-positive and ERα-negative breast cancer cells such as MDA-MB-435 and 4T1 cells increased ERα expression. Furthermore, inhibition of histone deacetylase (HDAC) activity including the one in NuRD complex significantly increased ERα expression in MDA-MB-435 and 4T1 cells. HDAC inhibition together with TWIST knockdown did not further increase ERα expression in 4T1 and MDA-MB-435 cells. These results demonstrate that TWIST/NuRD represses ERα expression in breast cancer cells. Therefore, TWIST may serve as a potential molecular target for converting ERα-negative breast cancers to ERα-positive breast cancers, allowing these cancers to restore their sensitivity to endocrine therapy with selective ERα antagonists such as tamoxifen and raloxifene.  相似文献   

2.
3.
The distal-less homeobox gene 4 (DLX4) is a member of the DLX family of homeobox genes. Although absent from most normal adult tissues, DLX4 is widely expressed in leukemia, lung, breast, ovarian and prostate cancers. However the molecular targets, mechanisms and pathways that mediate the role of DLX4 in tumor metastasis are poorly understood. In this study, we found that DLX4 induces cancer cells to undergo epithelial to mesenchymal transition (EMT) through TWIST. Overexpression of DLX4 increased expression of TWIST expression in cancer cell lines, resulting in increased migratory and invasive capacity. Likewise, knocking down expression of DLX4 decreased TWIST expression and the migration ability of cancer cell lines. DLX4 bound to regulatory regions of the TWIST gene. Both western blotting and immunohistochemistry staining showed that the expression of DLX4 and TWIST are correlated in most of breast tumors. Taken together, these data from both cell models and tumor tissues demonstrate that DLX4 not only upregulates TWIST expression but also induces EMT and tumor metastasis. Altogether, we propose a new pathway in which DLX4 drives expression of TWIST to promote EMT, cancer migration, invasion and metastasis.  相似文献   

4.
5.
DNA methylation had been implicated in the assembly of multiprotein repressory complexes that affect chromatin architecture thereby rendering genes inactive. Proteins containing methyl binding domains (MBDs) are major components of these complexes. MBD3 is a component of the HDAC associated chromatin remodeling complex Mi2/NuRD. The addition of MBD2 to the Mi2/NuRD complex creates MeCP1, a complex that is known to inactivate methylated promoters. The undermethylated state of the mouse preimplantation embryo prompted us to investigate the known repressory complexes at this developmental stage. We found individual components of Mi2/NuRD: MBD3, Mi2, HDAC1 and HDAC2 to be expressed from a very early stage of embryo development and to localize in close proximity with each other and with constitutive heterochromatin by the blastula stage. Expression of MBD2, a component of MeCP1, starts in the blastula stage. Then it is also found to be in proximity with heterochromatin (based on DAPI staining) and with MBD3, Mi2 and HDAC1. In contrast, expression of MeCP2, an MBD containing component of a third repressory complex (MeCP2/Sin3A), is not seen in the preimplantation embryo. Our results suggest that both Mi2/NuRD and MeCP1 complexes are already present at the very early stages of embryo development, while a MeCP2 complex is added to the arsenal of repressory complexes post-implantation at a stage when DNA methylation takes place.  相似文献   

6.
Qi Lv  Fang Hua  Zhuo-Wei Hu 《Autophagy》2012,8(11):1675-1676
Metastasis is the spread of cancer cells from their primary location to other parts of the body. Metastatic cancer is responsible for most cancer deaths. Increasing evidence indicates that epithelial-mesenchymal transition (EMT), a crucial developmental program, contributes to control cancer invasion and metastasis. We recently reported that death effector domain-containing DNA-binding protein (DEDD), a key effector molecule for cell death signaling receptors, attenuates EMT and acts as an endogenous suppressor of tumor growth and metastasis. We found that DEDD physically interacts with the class III PtdIns 3-kinase complex containing PIK3C3 and BECN1, which controls critical aspects of autophagy; this interaction activates autophagy and induces the autophagy-mediated lysosomal degradation of SNAI/Snail and TWIST, two master inducers of the EMT process. Further study reveals that the DEDD-PIK3C3 interaction can support the stability of PIK3C3 to maintain autophagic activity and promote the degradation of SNAI and TWIST. Our finding indicates that DEDD is a prognostic marker and a potential therapeutic target for the prevention and treatment of cancer metastasis. Moreover, regulation of the DEDD-PIK3C3 interaction may serve as an entry point to translate modifiers of this interaction into clinical endpoints.  相似文献   

7.
《Autophagy》2013,9(11):1675-1676
Metastasis is the spread of cancer cells from their primary location to other parts of the body. Metastatic cancer is responsible for most cancer deaths. Increasing evidence indicates that epithelial-mesenchymal transition (EMT), a crucial developmental program, contributes to control cancer invasion and metastasis. We recently reported that death effector domain-containing DNA-binding protein (DEDD), a key effector molecule for cell death signaling receptors, attenuates EMT and acts as an endogenous suppressor of tumor growth and metastasis. We found that DEDD physically interacts with the class III PtdIns 3-kinase complex containing PIK3C3 and BECN1, which controls critical aspects of autophagy; this interaction activates autophagy and induces the autophagy-mediated lysosomal degradation of SNAI/Snail and TWIST, two master inducers of the EMT process. Further study reveals that the DEDD-PIK3C3 interaction can support the stability of PIK3C3 to maintain autophagic activity and promote the degradation of SNAI and TWIST. Our finding indicates that DEDD is a prognostic marker and a potential therapeutic target for the prevention and treatment of cancer metastasis. Moreover, regulation of the DEDD-PIK3C3 interaction may serve as an entry point to translate modifiers of this interaction into clinical endpoints.  相似文献   

8.
Direct regulation of TWIST by HIF-1alpha promotes metastasis   总被引:2,自引:0,他引:2  
  相似文献   

9.
10.
11.
Helicobacter pylori, a Gram-negative, microaerophilic bacterium found in the stomach, is assumed to be associated with carcinogenesis, invasion and metastasis in digestive diseases. Cytotoxin-associated gene A (CagA) is an oncogenic protein of H. pylori that is encoded by a Cag pathogenicity island related to the development of gastric cancer. The epithelial–mesenchymal transition (EMT) is the main biological event in invasion or metastasis of epithelial cells. H. pylori may promote EMT in human gastric cancer cell lines, but the specific mechanisms are still obscure. We explored the underlying molecular mechanism of EMT induced by H. pylori CagA in gastric cancer. In our article, we detected gastric cancer specimens and adjacent non-cancerous specimens by immunohistochemistry and found increased expression of the EMT-related regulatory protein TWIST1 and the mesenchymal marker vimentin in cancer tissues, while programmed cell death factor 4 (PDCD4) and the epithelial marker E-cadherin expression decreased in cancer specimens. These changes were associated with degree of tissue malignancy. In addition, PDCD4 and TWIST1 levels were related. In gastric cancer cells cocultured with CagA expression plasmid, CagA activated TWIST1 and vimentin expression, and inhibited E-cadherin expression by downregulating PDCD4. CagA also promoted mobility of gastric cancer cells by regulating PDCD4. Thus, H. pylori CagA induced EMT in gastric cancer cells, which reveals a new signaling pathway of EMT in gastric cancer cell lines.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
BackgroundBreast cancer is the most common malignancy and has been considered as a leading cause of cancer death in women. Exploring the mechanism of breast cancer metastasis is extremely important for seeking novel therapeutic strategies and improving prognosis.MethodsClinical specimens and pathological characteristics were collected for evaluating the expression of forkhead box class O 3a (FOXO3a) and twist-related protein 1 (TWIST-1) in breast cancer tissues. CCK-8 assay was used to analyze cell proliferation. Cell invasion and migration were assessed by transwell assays. The expression of FOXO3a, TWIST-1, miR-10b, CADM2, FAK, phosphor-AKT and the epithelial-mesenchymal transition (EMT)-related protein (N-cadherin, E-cadherin and vimentin) were analyzed by RT-qPCR, immunohistochemical staining, immunofluorescence assay or western blot, respectively. Xenograft mouse models were used to analyze the role of the FOXO3a in breast cancer.ResultsFOXO3a was down-regulated and TWIST-1 was up-regulated in breast cancer tissues. Overexpression of FOXO3a or knockdown of TWIST-1 suppressed the proliferation, invasion, migration and EMT of breast cancer cells. Overexpression of TWIST-1 could reverse the effect of FOXO3a on the proliferation, invasion, migration and EMT of breast cancer. Moreover, FOXO3a suppressed the growth and metastasis of breast cancer by targeting TWIST1 in vivo.ConclusionFOXO3a inhibited the EMT and metastasis of breast cancer via TWIST-1/miR-10b/CADM2 axis.  相似文献   

20.
Although mammalian MBD3 contains the mCpG-binding domain (MBD) and is highly homologous with the authentic mCpG-binding protein MBD2, it was reported that the protein does not bind to mCpG specifically. Using recombinant human wild type and mutant MBD3 proteins, we demonstrated that atypical amino acids found in MBD3 MBD, namely, His-30 and Phe-34, are responsible for the inability of MBD3 to bind to mCpG. Interestingly, although H30K/F34Y MBD3 mutant protein binds to mCpG efficiently in vitro, it was not localized at the mCpG-rich pericentromeric regions in mouse cells. We also showed that Y34F MBD2b MBD, which possesses not the mCpG-specific DNA-binding activity but the nonspecific DNA-binding activity, was localized at the pericentromeric regions. These results suggested that the mCpG-specific DNA-binding activity is largely dispensable, and another factor(s) is required for the localization of MBD proteins in vivo. MBD3 was identified as a component of the NuRD/Mi2 complex that shows chromatin remodeling and histone deacetylase activities. We demonstrated that MBD3 MBD is necessary and sufficient for binding to HDAC1 and MTA2, two components of the NuRD/Mi2 complex. It was therefore suggested that mCpG-binding-defective MBD3 has evolutionarily conserved its MBD because of the secondary role played by the MBD in protein-protein interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号