首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
细菌通过其分泌系统将特定的效应蛋白输送到外界环境或进入靶细胞中,从而在细菌和宿主、细菌和微生物群落的相互作用中占据适应性优势。Ⅵ型分泌系统(The type VI secretion system,T6SS)是革兰氏阴性菌中广泛存在的大分子分泌装置,其结构和功能类似于可收缩的噬菌体尾针样,通过细胞间直接接触将细菌各种酶或毒素效应蛋白转运到原核和真核生物中,从而介导细菌间竞争以及对宿主的致病过程。有些效应蛋白还可通过非接触依赖的方式进入胞外环境来帮助细菌获取稀缺金属离子,并且它们对应激条件下细胞内金属稳态的维持至关重要。这篇综述总结了Ⅵ型分泌系统的结构、组装及其分泌的效应蛋白,并重点阐述了Ⅵ型分泌系统在多种金属离子转运机制中作用的研究进展,有助于理解T6SS在细菌间相互作用和细菌感染过程中发挥的重要作用。  相似文献   

2.
IX型分泌系统(Type IX Secretion System,T9SS)是一种最新发现的存在于许多革兰氏阴性细菌中的分泌系统。T9SS参与细菌的毒力和滑行运动及复杂生物聚合物的降解过程。近年来,与T9SS相关的研究一直都是微生物学领域关注的热点。本文就T9SS的发现、组成与结构、分泌机制及调控机制等方面的研究进展进行综述,以期为进一步解析细菌的T9SS提供新的思路。  相似文献   

3.
细菌的IV型分泌系统   总被引:2,自引:0,他引:2  
细菌的分泌系统与细菌的生存及致病性密切相关。细菌的分泌系统包括I-VI型,其中,IV型分泌系统是与细菌接合机制有关的一类分泌系统。IV型分泌系统不但可以转运DNA,还可以转运蛋白质及核糖核蛋白复合物等大分子物质,这点区别于其他几种分泌系统。IV型分泌系统介导基因水平转移,通过细菌间接合作用,传递抗性基因和毒力基因,有利于细菌进化;另一方面,IV型分泌系统转运效应蛋白质分子到宿主细胞,参与细菌致病。本文着重从IV型分泌系统几种主要类型的分泌机制等方面对IV型分泌系统进行概述。  相似文献   

4.
细菌Ⅵ型分泌系统的研究进展   总被引:1,自引:0,他引:1  
李俊  俞盈  王豪举 《微生物学报》2011,51(3):291-296
Ⅵ型分泌系统(Type Ⅵ secretion system,T6SS)是最近发现的一种新的分泌系统,广泛存在于革兰氏阴性菌变形菌门细菌中,主要由构成分泌系统的结构蛋白、形成跨膜管道结构的转位蛋白、分泌蛋白以及一些对分泌系统起辅助功能的蛋白组成。T6SS能够增强细菌对外界环境的适应性,介导细菌对宿主细胞的致病力以及其他功能。  相似文献   

5.
Ⅵ型分泌系统(Type Ⅵ secretion system,T6SS)是新近发现的一种细菌分泌系统,广泛存在于革兰阴性菌中,与细菌的致病性密切相关。目前,多种致病菌T6SS的致病机制都获得了广泛的研究。总结近年来T6SS的相关文献,对霍乱弧菌、铜绿假单胞菌、沙门菌等致病菌的T6SS及其致病机制作一综述。  相似文献   

6.
李梦石  邹清华 《微生物学通报》2020,47(12):4269-4277
细菌的VI型分泌系统(type VI secretion system,T6SS)是一种新发现的分泌系统,在病原菌对宿主黏附、侵入及杀伤等方面均发挥了重要作用。目前的研究主要集中在T6SS在细菌致病、细菌间竞争等作用方面。然而对于其调控因素的研究尚处于初级阶段。对于大多数细菌而言,T6SS的表达并不是恒定的。现已发现温度、渗透压、抗生素、离子等环境因素均可调节T6SS。此外,在分子层面,H-NS蛋白、RpoN转录因子、c-di-GMP等也可发挥对T6SS的调节作用。在这些调控因素的调节下,细菌可以适时地开启或关闭其T6SS的表达,从而更好地感知并适应环境。对T6SS调控因素的研究对于充分认识细菌致病性并进行有效控制至关重要。本文将对调节T6SS的环境因素与调节因子做一综述。  相似文献   

7.
Ⅳ型分泌系统(T4SS)广泛存在于革兰阴性菌中,细菌可通过该系统将生物大分子或毒力因子等运输至靶细胞中并发挥相应功能。目前在H.pylori中已发现了至少三种T4SS,其中研究较为透彻的是cag致病岛(cagPAI)编码的cagT4SS系统,此外可塑区编码的tfs3系统和comB系统也有相关的报道。H.pylori的T4SS作为其与致病相关的重要结构已受到很多学者关注,对该菌T4SS系统的研究有助于进一步明确H.pylori的致病机制,并为临床诊断和治疗相关胃十二指肠疾病提供新的靶点。本文将对H.pylori的T4SS相关研究进展作一简要综述。  相似文献   

8.
蛋白质分泌系统是细菌与外界交流的重要工具。革兰氏阴性细菌的Ⅵ型蛋白分泌系统(T6SS)可以转运分泌蛋白至细菌和真核细胞内,在菌间竞争中发挥重要作用,是细菌的一种重要的生存适应性武器。分泌蛋白主要包括起到运载作用的结构蛋白和有细胞毒性的效应蛋白这两类。本文主要从效应蛋白的视角讨论T6SS如何识别并转运效应蛋白的作用机理,回顾了以VgrG和PAAR为端部载体蛋白的转运途径、依赖端部运输的效应蛋白、T6SS伴侣蛋白等重要发现的背景和过程,并综述了T6SS分泌途径的新进展。  相似文献   

9.
蛋白质分泌系统是细菌与外界交流的重要工具。革兰氏阴性细菌的Ⅵ型蛋白分泌系统(T6SS)可以转运分泌蛋白至细菌和真核细胞内,在菌间竞争中发挥重要作用,是细菌的一种重要的生存适应性武器。分泌蛋白主要包括起到运载作用的结构蛋白和有细胞毒性的效应蛋白这两类。本文主要从效应蛋白的视角讨论T6SS如何识别并转运效应蛋白的作用机理,回顾了以VgrG和PAAR为端部载体蛋白的转运途径、依赖端部运输的效应蛋白、T6SS伴侣蛋白等重要发现的背景和过程,并综述了T6SS分泌途径的新进展。  相似文献   

10.
陈立  魏谦卓  大西浩平 《微生物学报》2019,59(11):2061-2068
青枯劳尔氏菌是导致多种重要经济作物毁灭性枯萎(bacterial wilt)的一种土传病害,严重危害热带和亚热带地区食品安全。该细菌通过III型分泌系统(T3SS)向寄主细胞注射大量效应蛋白(T3Es)。效应蛋白是把双刃剑,既可诱导植物感病,又能激活植物防御系统。具有特殊重复结构的效应蛋白被归类成多基因家族,各家族成员协同致病,但其分子机制尚不清楚。本文围绕近年来有关多基因家族效应蛋白结构、功能和致病性等方面最新进展进行综述,为青枯菌致病机理和病害防治提供新思路。  相似文献   

11.
Type IV secretion systems (T4SS) are utilized by a wide range of Gram negative bacteria to deliver protein and DNA substrates to recipient cells. The best characterized T4SS are the type IVA systems, which exhibit extensive similarity to the Agrobacterium VirB T4SS. In contrast, type IVB secretion systems share almost no sequence homology to the type IVA systems, are composed of approximately twice as many proteins, and remain largely uncharacterized. Type IVB systems include the Dot/Icm systems found in the pathogens Legionella and Coxiella and the conjugative apparatus of IncI plasmids. Here we report the first extensive characterization of a type IVB system, the Legionella Dot/Icm secretion apparatus. Based on biochemical and genetic analysis, we discerned the existence of a critical five-protein subassembly that spans both bacterial membranes and comprises the core of the secretion complex. This transmembrane connection is mediated by protein dimer pairs consisting of two inner membrane proteins, DotF and DotG, which are able to independently associate with DotH/DotC/DotD in the outer membrane. The Legionella core subcomplex appears to be functionally analogous to the Agrobacterium VirB7-10 subcomplex, suggesting a remarkable conservation of the core subassembly in these evolutionarily distant type IV secretion machines.  相似文献   

12.
The type IV secretion systems (T4SS) are widely distributed among the gram-negative and -positive bacteria. These systems mediate the transfer of DNA and protein substrates across the cell envelope to bacterial or eukaryotic cells generally through a process requiring direct cell-to-cell contact. Bacteria have evolved T4SS for survival during establishment of pathogenic or symbiotic relationships with eukaryotic hosts. The Agrobacterium tumefaciens VirB/D4 T4SS and related conjugation machines serve as models for detailed mechanistic studies aimed at elucidating the nature of translocation signals, machine assembly pathways and architectures, and the dynamics of substrate translocation. The A. tumefaciens VirB/D4 T4SS are polar-localized organelles composed of a secretion channel and an extracellular T pilus. These T4SS are assembled from 11 or more subunits. whose membrane topologies, intersubunit contacts and, in some cases, 3-dimensional structures are known. Recently, powerful in vivo assays have identified C-terminal translocation signals, defined for the first time the translocation route for a DNA substrate through a type IV secretion channel, and supplied evidence that ATP energy consumption contributes to a late stage of machine morphogenesis. Together, these recent findings describe the mechanics of type IV secretion in unprecedented detail.  相似文献   

13.
Type II protein secretion systems (T2SS) are molecular machines that promote specific transport of folded periplasmic proteins in Gram-negative bacteria, across a dedicated channel in the outer membrane. Secreted substrates, released to the milieu or displayed on the cell surface, contribute to bacterial adaptation to a range of habitats, from deep-sea waters to animal and plant tissues. The past decade has seen remarkable progress in structural, biochemical and functional analysis of T2SS and related systems, bringing new mechanistic insights into these dynamic complexes. This review focuses on recent advances in the field, and discusses open questions regarding the secretion mechanism. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.  相似文献   

14.
The T3SS (type III secretion system) is a multi-protein complex that plays a central role in the virulence of many gram-negative bacterial pathogens. This apparatus spans both bacterial membranes and transports virulence factors from the bacterial cytoplasm into eukaryotic host cells. The T3SS exports substrates in a hierarchical and temporal manner. The first secreted substrates are the rod/needle proteins which are incorporated into the T3SS apparatus and are required for the secretion of later substrates, the translocators and effectors. In the present study, we provide evidence that rOrf8/EscI, a poorly characterized locus of enterocyte effacement-encoded protein, functions as the inner rod protein of the T3SS of EPEC (enteropathogenic Escherichia coli). We demonstrate that EscI is essential for type III secretion and is also secreted as an early substrate of the T3SS. We found that EscI interacts with EscU, the integral membrane protein that is linked to substrate specificity switching, implicating EscI in the substrate-switching event. Furthermore, we showed that EscI self-associates and interacts with the outer membrane secretin EscC, further supporting its function as an inner rod protein. Overall, the results of the present study suggest that EscI is the YscI/PrgJ/MxiI homologue in the T3SS of attaching and effacing pathogens.  相似文献   

15.
Membrane-associated ATPase constitutes an essential element common to all secretion machineries in Gram-negative bacteria. How ATP hydrolysis by these ATPases is coupled to secretion process remains unclear. Here we identified R286 as a key residue in the type II secretion system (T2SS) ATPase XpsE of Xanthomonas campestris that plays a pivotal role in coupling ATP hydrolysis to protein translocation. Mutation of R286 to alanine made XpsE hydrolyse ATP at a rate five times that of the wild-type XpsE. Yet the mutant XpsE(R286A) is non-functional in protein secretion via T2SS. Detailed analyses indicated that the mutant XpsE(R286A) lost the ability co-ordinating the N- and C-domain of XpsE. Without significantly influencing XpsE binding affinity with ATP or its oligomerization, R286A mutation however, caused XpsE lose the ability to associate with the cytoplasmic membrane via XpsL(N). As a consequence, ATP hydrolysis by XpsE was uncoupled from protein secretion. Because R286 is highly conserved among members of the secretion NTPase superfamily, we speculate that its equivalent in other homologues may also play a critical energy coupling role for T2SS, type IV pilus assembly and type IV secretion system.  相似文献   

16.
The type IV secretion systems (T4SS) are widely distributed among the Gram-negative and –positive bacteria. These systems mediate the transfer of DNA and protein substrates across the cell envelope to bacterial or eukaryotic cells generally through a process requiring direct cell-to-cell contact. Bacteria have evolved T4SS for survival during establishment of pathogenic or symbiotic relationships with eukaryotic hosts. The Agrobacterium tumefaciens VirB/D4 T4SS and related conjugation machines serve as models for detailed mechanistic studies aimed at elucidating the nature of translocation signals, machine assembly pathways and architectures, and the dynamics of substrate translocation. The A. tumefaciens VirB/D4 T4SS are polar-localized organelles composed of a secretion channel and an extracellular T pilus. These T4SS are assembled from 11 or more subunits. whose membrane topologies, intersubunit contacts and, in some cases, 3-dimensional structures are known. Recently, powerful in vivo assays have identified C-terminal translocation signals, defined for the first time the translocation route for a DNA substrate through a type IV secretion channel, and supplied evidence that ATP energy consumption contributes to a late stage of machine morphogenesis. Together, these recent findings describe the mechanics of type IV secretion in unprecedented detail.  相似文献   

17.
Bacterial Type II secretion systems (T2SS) and type IV pili (T4P) biogenesis machineries share the ability to assemble thin filaments from pilin protein subunits in the plasma membrane. Here we describe in detail the calculation strategy that served to determine a detailed atomic model of the T2SS pilus from Klebsiella oxytoca (Campos et al., PNAS 2010). The strategy is based on molecular modeling with generalized distance restraints and experimental validation (salt bridge charge inversion; double cysteine substitution and crosslinking). It does not require directly fitting structures into an envelope obtained from electron microscopy, but relies on lower resolution information, in particular the symmetry parameters of the helix forming the pilus. We validate the strategy with T4P where either a higher resolution structure is available (for the gonococcal (GC) pilus from Neisseria gonorrhoeae), or where we can compare our results to additional experimental data (for Vibrio cholerae TCP). The models are of sufficient precision to compare the architecture of the different pili in detail.  相似文献   

18.
In Gram-negative bacteria, type II secretion systems (T2SS) assemble inner membrane proteins of the major pseudopilin PulG (GspG) family into periplasmic filaments, which could drive protein secretion in a piston-like manner. Three minor pseudopilins PulI, PulJ and PulK are essential for protein secretion in the Klebsiella oxytoca T2SS, but their molecular function is unknown. Here, we demonstrate that together these proteins prime pseudopilus assembly, without actively controlling its length or secretin channel opening. Using molecular dynamics, bacterial two-hybrid assays, cysteine crosslinking and functional analysis, we show that PulI and PulJ nucleate filament assembly by forming a staggered complex in the plasma membrane. Binding of PulK to this complex results in its partial extraction from the membrane and in a 1-nm shift between their transmembrane segments, equivalent to the major pseudopilin register in the assembled PulG filament. This promotes fully efficient pseudopilus assembly and protein secretion. Therefore, we propose that PulI, PulJ and PulK self-assembly is thermodynamically coupled to the initiation of pseudopilus assembly, possibly setting the assembly machinery in motion.  相似文献   

19.
20.
Type I strains of Helicobacter pylori (Hp) use a type IV secretion system (T4SS), encoded by the cag pathogenicity island (cag-PAI), to deliver the bacterial protein CagA into eukaryotic cells and to induce interleukin-8 secretion. Translocated CagA is activated by tyrosine phosphorylation involving Src-family kinases. The mechanism and structural basis for type IV protein secretion is not well understood. We describe here, by confocal laser scanning microscopy and field emission scanning electron microscopy, a novel filamentous surface organelle which is part of the Hp T4SS. The organelle is often located at one bacterial pole but can be induced by cell contact also along the lateral side of the bacteria. It consists of a rigid needle, covered focally or completely by HP0527 (Cag7 or CagY), a VirB10-homologous protein. HP0527 is also clustered in the outer membrane. The VirB7-homologous protein HP0532 is found at the base of this organelle. These observations demonstrate for the first time by microscopic techniques a complex T4SS-associated, sheathed surface organelle reminiscent to the needle structures of bacterial type III secretion systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号