首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A C Chan  M Iwashima  C W Turck  A Weiss 《Cell》1992,71(4):649-662
Protein-tyrosine kinases (PTKs) play an integral role in T cell activation. Stimulation of the T cell antigen receptor (TCR) results in tyrosine phosphorylation of a number of cellular substrates. One of these is the TCR zeta chain, which can mediate the transduction of extracellular stimuli into cellular effector functions. We have recently identified a 70 kd tyrosine phosphoprotein (ZAP-70) that associates with zeta and undergoes tyrosine phosphorylation following TCR stimulation. Here we report the isolation of a cDNA clone encoding ZAP-70. ZAP-70 represents a novel PTK and is expressed in T and natural killer cells. Moreover, tyrosine phosphorylation and association of ZAP-70 with zeta require the presence of src family PTKs and provide a potential mechanism by which the src family PTKs and ZAP-70 may interact to mediate TCR signal transduction.  相似文献   

2.
The T cell receptor (TCR)-CD3 complex and the costimulatory molecule CD28 are critical for T cell function. Both receptors utilize protein tyrosine kinases (PTKs) for the phosphorylation of various signaling molecules, a process that is critical for the function of both receptors. The PTKs of the focal adhesion family, Pyk2 and Fak, have been implicated in the signaling of TCR and CD28. We show here evidence for the regulation of TCR- and CD28-induced tyrosine phosphorylation of the focal adhesion PTKs by protein kinase C (PKC). Thus, treating Jurkat T cells with the PKC activator phorbol 12-myristate 13-acetate (PMA) rapidly and strongly reversed receptor-induced tyrosine phosphorylation of the focal adhesion PTKs. In contrast, PMA did not affect TCR-induced tyrosine phosphorylation of CD3zeta or the PTKs Fyn and Zap-70. However, PMA induced a strong and rapid dephosphorylation of the linker molecule for activation of T cells. PMA failed to induce the dephosphorylation of proteins in PKC-depleted cells or in cells pretreated with the PKC inhibitor Ro-31-8220, confirming the role of PKC in mediating the PMA effect on receptor-induced protein tyrosine phosphorylation. The involvement of protein tyrosine phosphatases (PTPases) in mediating the dephosphorylation of the focal adhesion PTKs was confirmed by the failure of PMA to dephosphorylate Pyk2 in cells pretreated with the PTPase inhibitor orthovanadate. These results implicate PKC in the regulation of receptor-induced tyrosine phosphorylation of the focal adhesion PTKs in T cells. The data also suggest a role for PTPases in the PKC action.  相似文献   

3.
T-cell antigen receptor (TCR) engagement results in sequential activation of the Src protein tyrosine kinases (PTKs) Lck and Fyn and the Syk PTKs, ZAP-70 and Syk. While the Src PTKs mediate the phosphorylation of TCR-associated signaling subunits and the phosphorylation and activation of the Syk PTKs, the lack of a constitutively active Syk PTK has prohibited the analysis of Lck function downstream of these initiating signaling events. We describe here the generation of an activated Syk family PTK by substituting the kinase domain of Syk for the homologous region in ZAP-70 (designated as KS for kinase swap). Expression of the KS chimera resulted in its autophosphorylation, the phosphorylation of cellular proteins, the upregulation of T-cell activation markers, and the induction of interleukin-2 gene synthesis in a TCR-independent fashion. The KS chimera and downstream ZAP-70 or Syk substrates, such as SLP-76, were still phosphorylated when expressed in Lck-deficient JCaM1.6 T cells. However, expression of the KS chimera in JCaM1.6 cells failed to rescue downstream signaling events, demonstrating a functional role for Lck beyond the activation of the ZAP-70 and Syk PTKs. These results indicate that downstream TCR signaling pathways may be differentially regulated by ZAP-70 and Lck PTKs and provide a mechanism by which effector functions may be selectively activated in response to TCR stimulation.  相似文献   

4.
ZAP-70 is a nonreceptor protein tyrosine kinase that is essential for signaling via the T cell antigen receptor (TCR). ZAP-70 becomes phosphorylated and activated by LCK protein tyrosine kinase after interaction of its two NH2-terminal SH2 domains with tyrosine-phosphorylated subunits of the activated TCR. In this study, the localization of ZAP-70 was investigated by immunofluorescence and confocal microscopy. ZAP-70 was found to be localized to the cell cortex in a diffuse band under the plasma membrane in unstimulated T cells, and this localization was not detectably altered by TCR stimulation. Analysis of mutants indicated that ZAP-70 targeting was independent of its SH2 domains but required its active kinase domain. The specific compartmentalization of ZAP-70 suggests that it may interact with an anchoring protein in the cell cortex via its hinge or kinase domains. It is likely that the maintenance of high concentrations of ZAP-70 at the cell cortex, that only has to move a short distance to interact with phophorylated TCR subunits, facilitates rapid initiation of signaling by the TCR. In addition, as the major increase in tyrosine phosphorylation induced by the TCR also occurs at the cell cortex (Ley, S.C., M. Marsh, C.R. Bebbington, K. Proudfoot, and P. Jordan. 1994. J. Cell. Biol. 125:639–649), ZAP-70 may be localized close to its downstream targets.  相似文献   

5.
D H Chu  H Spits  J F Peyron  R B Rowley  J B Bolen    A Weiss 《The EMBO journal》1996,15(22):6251-6261
The protein tyrosine phosphatase CD45 is a critical component of the T cell antigen receptor (TCR) signaling pathway, acting as a positive regulator of Src family protein tyrosine kinases (PTKs) such as Lck. Most CD45-deficient human and murine T cell lines are unable to signal through their TCRs. However, there is a CD45-deficient cell line that can signal through its TCR. We have studied this cell line to identify a TCR signaling pathway that is independent of CD45 regulation. In the course of these experiments, we found that the Syk PTK, but not the ZAP-70 PTK, is able to mediate TCR signaling independently of CD45 and of Lck. For this function, Syk requires functional kinase and SH2 domains, as well as intact phosphorylation sites in the regulatory loop of its kinase domain. Thus, differential expression of Syk is likely to explain the paradoxical phenotypes of different CD45-deficient T cells. Finally, these results suggest differences in activation requirements between two closely related PTK family members, Syk and ZAP-70. The differential activities of these two kinases suggest that they may play distinct, rather than completely redundant, roles in lymphocyte signaling.  相似文献   

6.
While neddylation is known to activate cullin (CUL)-RING ubiquitin ligases (CRLs), its role in regulating T cell signaling is poorly understood. Using the investigational NEDD8 activating enzyme (NAE) inhibitor, MLN4924, we found that neddylation negatively regulates T cell receptor (TCR) signaling, as its inhibition increases IL-2 production, T cell proliferation and Treg development in vitro. We also discovered that loss of CUL neddylation occurs upon TCR signaling, and CRLs negatively regulate IL-2 production. Additionally, we found that tyrosine kinase signaling leads to CUL deneddylation in multiple cell types. These studies indicate that CUL neddylation is a global regulatory mechanism for tyrosine kinase signaling.  相似文献   

7.
Recruitment of signaling molecules to the cytoplasmic domains of the CD3 subunits of the T-cell receptor (TCR) is crucial for early T-cell activation. These transient associations either do or do not require tyrosine phosphorylation of CD3 immune tyrosine activation motifs (ITAMs). Here we show that the non-ITAM-requiring adaptor protein Nck forms a complex with an atypical PxxDY motif of the CD3ε tail, which encompasses Tyr166 within the ITAM and a TCR endocytosis signal. As suggested by the structure of the complex, we find that Nck binding inhibits phosphorylation of the CD3ε ITAM by Fyn and Lck kinases in vitro. Moreover, the CD3ε-Nck interaction downregulates TCR surface expression upon physiological stimulation in mouse primary lymph node cells. This indicates that Nck performs an important regulatory function in T lymphocytes by inhibiting ITAM phosphorylation and/or removing cell surface TCR via CD3ε interaction.  相似文献   

8.
An early event in T cell antigen receptor (TCR)-mediated signal transduction is the activation of a protein tyrosine kinase (PTK) pathway. An unidentified PTK activity and a kinase substrate termed ZAP-70 have previously been shown to associate with TCR zeta upon cross-linking of TCR beta. Here we report that TCR activation, by antibody cross-linking of either TCR beta or CD3 epsilon, results in the association of a PTK activity with both CD3 and TCR zeta. A number of in vitro PTK substrates are also associated with CD3 and TCR zeta, including CD3 epsilon, TCR zeta, p60fyn, p62yes, and a predominant 70-kDa protein (ZAP-70). The shared PTK activity and PTK substrates suggest that both CD3 and TCR zeta are involved in signal transduction via a shared pathway. We used [alpha-32P]gamma-azidoanilido ATP, a photoreactive analogue of ATP, to detect CD3-associated proteins that bound ATP upon TCR activation, reasoning that such proteins could represent PTKs. A 70-kDa protein bound [alpha-32P]gamma-azidoanilido ATP only upon TCR activation, and we propose that this protein and the 70-kDa PTK substrate are the same protein. Furthermore, we propose that this protein is responsible for the PTK activity observed to be associated with TCR zeta and CD3 upon TCR activation.  相似文献   

9.
10.
11.
To investigate the roles of various hematopoietic cell-specific adapter proteins in T cell receptor (TCR)-signaling leading to nuclear factor of activated T cell (NF-AT) and nuclear factor of kappaB (NF-kappaB) activation, we reconstituted TCR-signaling with CD8/zeta, various protein tyrosine kinases (PTKs), and adapter proteins in a non-lymphoid cell line, 293T. We show that SLP-76 and BLNK, but not LAT, effectively co-operated with Syk and Tec family PTKs to activate NF-AT and NF-kappaB. We also show that Tec family PTKs enhanced endogenous phospholipase C (PLC)-gamma1 phosphorylation induced by CD8/zeta and Syk in 293T cells. These results imply that PLC-gamma1 may play a critical role in a hematopoietic cell-specific adapter protein-mediated NF-AT and NF-kappaB activation in a non-lymphoid cell.  相似文献   

12.
The balance between positive and negative signals plays a key role in determining T cell function. CTL-associated Ag-4 is a surface receptor that can inhibit T cell responses induced upon stimulation of the TCR and its CD28 coreceptor. Little is known regarding the signaling mechanisms elicited by CTLA-4. In this study we analyzed CTLA-4-mediated inhibition of TCR signaling in primary resting human CD4(+) T cells displaying low, but detectable, CTLA-4 cell surface expression. CTLA-4 coligation with the TCR resulted in reduced downstream protein tyrosine phosphorylation of signaling effectors and a striking inhibition of extracellular signal-regulated kinase 1/2 activation. Analysis of proximal TCR signaling revealed that TCR zeta-chain phosphorylation and subsequent zeta-associated protein of 70 kDa (ZAP-70) tyrosine kinase recruitment were not significantly affected by CTLA-4 engagement. However, the association of p56(lck) with ZAP-70 was inhibited following CTLA-4 ligation, correlating with reduced actions of p56(lck) in the ZAP-70 immunocomplex. Moreover, CTLA-4 ligation caused the selective inhibition of CD3-mediated phosphorylation of the positive regulatory ZAP-70 Y319 site. In addition, we demonstrate protein tyrosine phosphatase activity associated with the phosphorylated CTLA-4 cytoplasmic tail. The major phosphatase activity was attributed to Src homology protein 2 domain-containing tyrosine phosphatase 1, a protein tyrosine phosphatase that has been shown to be a negative regulator of multiple signaling pathways in hemopoietic cells. Collectively, our findings suggest that CTLA-4 can act early during the immune response to regulate the threshold of T cell activation.  相似文献   

13.
A C Chan  M Dalton  R Johnson  G H Kong  T Wang  R Thoma    T Kurosaki 《The EMBO journal》1995,14(11):2499-2508
ZAP-70 is a protein tyrosine kinase (PTK) required for T-cell development and T-cell antigen receptor (TCR) function. ZAP-70 is associated with the phosphorylated antigen receptor and undergoes tyrosine phosphorylation following receptor activation. We demonstrate here that tyrosine phosphorylation of ZAP-70 results in an increase in its catalytic activity and that this activation is mediated by the phosphorylation of tyrosine residue 493 by the src family of PTKs. The activity of baculoviral expressed ZAP-70 was up-regulated 10-fold when ZAP-70 was co-infected and phosphorylated by the src family PTK, lck. Mutation of Y493 alone abrogated the ability of ZAP-70 to be activated by lck. Moreover, we demonstrate that phosphorylation of Y493 and activation of ZAP-70 is required for antigen receptor-mediated induction of interleukin-2 (IL-2) secretion in lymphocytes.  相似文献   

14.
It is well known that T cell differentiation and maturation in the thymus is tightly controlled at multiple checkpoints. However, the molecular mechanism for the control of this developmental program is not fully understood. A number of protein tyrosine kinases, such as Zap-70, Lck, and Fyn, have been shown to promote signals required for thymocyte development, whereas a tyrosine phosphatase Src homology domain-containing tyrosine phosphatase (Shp)1 has a negative effect in pre-TCR and TCR signaling. We show in this study that Shp2, a close relative of Shp1, plays a positive role in T cell development and functions. Lck-Cre-mediated deletion of Shp2 in the thymus resulted in a significant block in thymocyte differentiation/proliferation instructed by the pre-TCR at the beta selection step, and reduced expansion of CD4(+) T cells. Furthermore, mature Shp2(-/-) T cells showed decreased TCR signaling in vitro. Mechanistically, Shp2 acts to promote TCR signaling through the ERK pathway, with impaired activation of ERK kinase observed in Shp2(-/-) T cells. Thus, our results provide physiological evidence that Shp2 is a common signal transducer for pre-TCR and TCR in promoting T cell maturation and proliferation.  相似文献   

15.
IL-15 plays a seminal role in innate immunity through enhancing the cytotoxic function as well as cytokine production by NK and T cells. We have previously shown that exposure of PBMC as well as monocytic cells to different viruses results in immediate up-regulation of IL-15 gene expression and subsequent NK cell activation as an innate immune response of those cells to these viruses. However, no signaling pathway involved in this up-regulation has been identified. Here we show for the first time that HSV-1-induced up-regulation of IL-15 gene expression is independent of viral infectivity/replication. IL-15 gene is up-regulated by HSV-1 in human monocytes, but not in CD3+ T cells. HSV-1 induces the phosphorylation of protein tyrosine kinases (PTKs) and protein kinase C (PKC) for inducing IL-15 expression in monocytic cells. Inhibitors for PTKs reduced HSV-1-induced PTK activity, DNA binding activity of NF-kB as well as IL-15 gene expression. In contrast, an inhibitor for membrane-bound tyrosine kinases had no effect on these events. Experiments using PKC inhibitors revealed that phosphorylation of PKC zeta/lambda (PKC zeta/lambda), DNA binding activity of NF-kB and HSV-1-induced up-regulation of IL-15 were all decreased. Furthermore, we found that HSV-1-induced IL-15 up-regulation was also dependent on PTKs regulation of PKC phosphorylation. Thus, we conclude that IL-15 up-regulation in HSV-1-treated monocytic cells is dependent on the activity of both PTKs and PKC zeta/lambda.  相似文献   

16.
Rod photoreceptor cyclic nucleotide–gated (CNG) channels are modulated by tyrosine phosphorylation. Rod CNG channels expressed in Xenopus oocytes are associated with constitutively active protein tyrosine kinases (PTKs) and protein tyrosine phosphatases that decrease and increase, respectively, the apparent affinity of the channels for cGMP. Here, we examine the effects of genistein, a competitive inhibitor of the ATP binding site, on PTKs. Like other PTK inhibitors (lavendustin A and erbstatin), cytoplasmic application of genistein prevents changes in the cGMP sensitivity that are attributable to tyrosine phosphorylation of the CNG channels. However, unlike these other inhibitors, genistein also slows the activation kinetics and reduces the maximal current through CNG channels at saturating cGMP. These effects occur in the absence of ATP, indicating that they do not involve inhibition of a phosphorylation event, but rather involve an allosteric effect of genistein on CNG channel gating. This could result from direct binding of genistein to the channel; however, the time course of inhibition is surprisingly slow (>30 s), raising the possibility that genistein exerts its effects indirectly. In support of this hypothesis, we find that ligands that selectively bind to PTKs without directly binding to the CNG channel can nonetheless decrease the effect of genistein. Thus, ATP and a nonhydrolyzable ATP derivative competitively inhibit the effect of genistein on the channel. Moreover, erbstatin, an inhibitor of PTKs, can noncompetitively inhibit the effect of genistein. Taken together, these results suggest that in addition to inhibiting tyrosine phosphorylation of the rod CNG channel catalyzed by PTKs, genistein triggers a noncatalytic interaction between the PTK and the channel that allosterically inhibits gating.  相似文献   

17.
Dong S  Corre B  Nika K  Pellegrini S  Michel F 《PloS one》2010,5(11):e15114

Background

One of the earliest activation events following stimulation of the T cell receptor (TCR) is the phosphorylation of the immunoreceptor tyrosine-based activation motifs (ITAMs) within the CD3-associated complex by the Src family kinase Lck. There is accumulating evidence that a large pool of Lck is constitutively active in T cells but how the TCR is connected to Lck and to the downstream signaling cascade remains elusive.

Methodology/Principal Findings

We have analyzed the phosphorylation state of Lck and Fyn and TCR signaling in human naïve CD4+ T cells and in the transformed T cell line, Hut-78. The latter has been shown to be similar to primary T cells in TCR-inducible phosphorylations and can be highly knocked down by RNA interference. In both T cell types, basal phosphorylation of Lck and Fyn on their activatory tyrosine was observed, although this was much less pronounced in Hut-78 cells. TCR stimulation led to the co-precipitation of Lck with the transmembrane adaptor protein LAT (linker for activation of T cells), Erk-mediated phosphorylation of Lck and no detectable dephosphorylation of Lck inhibitory tyrosine. Strikingly, upon LAT knockdown in Hut-78 cells, we found that LAT promoted TCR-induced phosphorylation of Lck and Fyn activatory tyrosines, TCRζ chain phosphorylation and Zap-70 activation. Notably, LAT regulated these events at low strength of TCR engagement.

Conclusions/Significance

Our results indicate for the first time that LAT promotes TCR signal initiation and suggest that this adaptor may contribute to maintain active Lck in proximity of their substrates.  相似文献   

18.
Regulation of protein tyrosine kinases (PTKs) by tyrosine phosphorylation is well recognized; in fact, nearly all PTKs require phosphorylation of tyrosine residues in their "activation loop" for catalytic activity. In contrast, the phosphorylation of PTKs on serine and threonine residues has not been studied nearly as much. We report that the ZAP-70 PTK contains predominately phosphoserine in normal T lymphocytes as well as in Jurkat T leukemia cells. We have identified one site of phosphorylation as Ser-520 and find this site to be important for the recruitment and activation of ZAP-70 in T cells. Mutant ZAP-70-S520A had reduced ability to autophosphorylate and to mediate antigen receptor-induced interleukin 2 gene activation and was not enriched at the plasma membrane. These defects were rescued by addition of a myristylation signal to the N terminus of ZAP-70-S520A to force its plasma membrane and lipid raft localization. We conclude that phosphorylation of ZAP-70 at Ser-520 plays an important role in the correct localization of ZAP-70 and in priming ZAP-70 for its acute recruitment and activation upon antigen receptor ligation.  相似文献   

19.
Pontin is a chromatin remodeling factor that possesses both ATPase and DNA helicase activities. Based on high expression in lymphoid tissues, we examined whether Pontin has a T cell-specific function. We generated Pontinf/f;Lck-Cre mice, in which Pontin can be conditionally deleted in T cells and then explored T cell-specific function of Pontin in vivo. Here, we show that specific abrogation of Pontin expression in T cells almost completely blocked development of αβ T cells at the β-selection checkpoint by inducing cell apoptosis indicating that Pontin is essential for early T cell development. Pontin-deficient thymocytes show a comparable expression level of T cell receptor (TCR)β chain, but have enhanced activation of p53 and Notch signaling compared to wild-type thymocytes. Intriguingly, the developmental block of αβ T cells can be partially rescued by loss of p53. Together, our data demonstrate a novel role of Pontin as a crucial regulator in pre-TCR signaling during T cell development.  相似文献   

20.
T cell activity is controlled in large part by the T cell receptor (TCR). The TCR detects the presence of foreign pathogens and activates the T cell-mediated immune reaction. Numerous intracellular signaling pathways downstream of the TCR are involved in the process of T cell activation. Negative regulation of these pathways helps prevent excessive and deleterious T cell responses. Two homologous proteins, Sts-1 and Sts-2, have been shown to function as critical negative regulators of TCR signaling. The phosphoglycerate mutase-like domain of Sts-1 (Sts-1(PGM)) has a potent phosphatase activity that contributes to the suppression of TCR signaling. The function of Sts-2(PGM) as a phosphatase has been less clear, principally because its intrinsic enzyme activity has been difficult to detect. Here, we demonstrate that Sts-2 regulates the level of tyrosine phosphorylation on targets within T cells, among them the critical T cell tyrosine kinase Zap-70. Utilizing new phosphorylated substrates, we demonstrate that Sts-2(PGM) has clear, albeit weak, phosphatase activity. We further pinpoint Sts-2 residues Glu-481, Ser-552, and Ser-582 as specificity determinants, in that an Sts-2(PGM) triple mutant in which these three amino acids are altered to their counterparts in Sts-1(PGM) has substantially increased activity. Our results suggest that the phosphatase activities of both suppressor of TCR signaling homologues cooperate in a similar but independent fashion to help set the threshold for TCR-induced T cell activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号