首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.

Background

The apparent effect of a single nucleotide polymorphism (SNP) on phenotype depends on the linkage disequilibrium (LD) between the SNP and a quantitative trait locus (QTL). However, the phase of LD between a SNP and a QTL may differ between Bos indicus and Bos taurus because they diverged at least one hundred thousand years ago. Here, we test the hypothesis that the apparent effect of a SNP on a quantitative trait depends on whether the SNP allele is inherited from a Bos taurus or Bos indicus ancestor.

Methods

Phenotype data on one or more traits and SNP genotype data for 10 181 cattle from Bos taurus, Bos indicus and composite breeds were used. All animals had genotypes for 729 068 SNPs (real or imputed). Chromosome segments were classified as originating from B. indicus or B. taurus on the basis of the haplotype of SNP alleles they contained. Consequently, SNP alleles were classified according to their sub-species origin. Three models were used for the association study: (1) conventional GWAS (genome-wide association study), fitting a single SNP effect regardless of subspecies origin, (2) interaction GWAS, fitting an interaction between SNP and subspecies-origin, and (3) best variable GWAS, fitting the most significant combination of SNP and sub-species origin.

Results

Fitting an interaction between SNP and subspecies origin resulted in more significant SNPs (i.e. more power) than a conventional GWAS. Thus, the effect of a SNP depends on the subspecies that the allele originates from. Also, most QTL segregated in only one subspecies, suggesting that many mutations that affect the traits studied occurred after divergence of the subspecies or the mutation became fixed or was lost in one of the subspecies.

Conclusions

The results imply that GWAS and genomic selection could gain power by distinguishing SNP alleles based on their subspecies origin, and that only few QTL segregate in both B. indicus and B. taurus cattle. Thus, the QTL that segregate in current populations likely resulted from mutations that occurred in one of the subspecies and can have both positive and negative effects on the traits. There was no evidence that selection has increased the frequency of alleles that increase body weight.  相似文献   

3.
High density genotyping panels have been used in a wide range of applications. From population genetics to genome-wide association studies, this technology still offers the lowest cost and the most consistent solution for generating SNP data. However, in spite of the application, part of the generated data is always discarded from final datasets based on quality control criteria used to remove unreliable markers. Some discarded data consists of markers that failed to generate genotypes, labeled as missing genotypes. A subset of missing genotypes that occur in the whole population under study may be caused by technical issues but can also be explained by the presence of genomic variations that are in the vicinity of the assayed SNP and that prevent genotyping probes from annealing. The latter case may contain relevant information because these missing genotypes might be used to identify population-specific genomic variants. In order to assess which case is more prevalent, we used Illumina HD Bovine chip genotypes from 1,709 Nelore (Bos indicus) samples. We found 3,200 missing genotypes among the whole population. NGS re-sequencing data from 8 sires were used to verify the presence of genomic variations within their flanking regions in 81.56% of these missing genotypes. Furthermore, we discovered 3,300 novel SNPs/Indels, 31% of which are located in genes that may affect traits of importance for the genetic improvement of cattle production.  相似文献   

4.
High-throughput sequencing of pooled DNA was applied to polymorphism discovery in candidate genes involved in starch synthesis. This approach employed semi- to long-range PCR (LR-PCR) followed by next-generation sequencing technology. A total of 17 rice starch synthesis genes encoding seven classes of enzymes, including ADP-glucose pyrophosphorylase (AGPase), granule starch synthase (GBSS), soluble starch synthase (SS), starch branching enzyme (BE), starch debranching enzyme (DBE) and starch phosphorylase (SPHOL) and phosphate translocator (GPT1) from 233 genotypes were PCR amplified using semi- to long-range PCR. The amplification products were equimolarly pooled and sequenced using massively parallel sequencing technology (MPS). By detecting single nucleotide polymorphism (SNP)/Indels in both coding and noncoding areas of the genes, we identified genetic differences and characterized the SNP/Indel variation and distribution patterns among individual starch candidate genes. Approximately, 60.9 million reads were generated, of which 54.8 million (90%) mapped to the reference sequences. The average coverage rate ranged from 12,708 to 38,300 times for SSIIa and SSIIIb, respectively. SNPs and single/multiple-base Indels were analysed in a total assembled length of 116,403 bp. In total, 501 SNPs and 113 Indels were detected across the 17 starch-related loci. The ratio of synonymous to nonsynonymous SNPs (Ka/Ks) test indicated GBSSI and isoamylase 1 (ISA1) as the least diversified (most purified) and conservative genes as the studied populations have been through cycles of selection. This report demonstrates a useful strategy for screening germplasm by MPS to discover variants in a specific target group of genes.  相似文献   

5.
6.
《Genomics》2020,112(5):3455-3464
Blue wildebeest (Connochaetes taurinus taurinus) are economically important antelope that are widely utilised in the South African wildlife industry. However, very few genomic resources are available for blue wildebeest that can assist in breeding management and facilitate research. This study aimed to develop a set of genome-wide single nucleotide polymorphism (SNP) markers for blue wildebeest. The DArTseq genotyping platform, commonly used in polyploid plant species, was selected for SNP discovery. A limited number of published articles have described the use of the DArTseq platform in animals and, therefore, this study also provided a unique opportunity to assess the performance of the DArTseq platform in an animal species. A total of 20,563 SNPs, each located within a 69 bp sequence, were generated. The developed SNP markers had a high average scoring reproducibility (>99%) and a low percentage missing data (~9.21%) compared to other reduced representation sequencing approaches that have been used in animal studies. Furthermore, the number of candidate SNPs per nucleotide position decreased towards the 3′ end of sequence reads, and the ratio of transitions (Ts) to transversions (Tv) remained similar for each read position. These observations indicate that there was no read position bias, such as the identification of false SNPs due to low sequencing quality, towards the tail-end of sequencing reads. The DArTseq platform was also successful in identifying a large number of informative SNPs with desirable polymorphism parameters such as a high minor allele frequency (MAF). The Bos taurus genome was used for the in silico mapping of the marker sequences and a total of 6020 (29.28%) sequences were successfully mapped against the bovine genome. The marker sequences mapped to all of the bovine chromosomes establishing the genome-wide distribution of the SNPs. Moreover, the high observed Ts:Tv ratio (2.84:1) indicate that the DArTseq platform targeted gene-rich regions of the blue wildebeest genome. Finally, functional annotation of the marker sequences revealed a wide range of different putative functions indicating that these SNP markers can be useful in functional gene studies. The DArTseq platform, therefore, represents a high-throughput, robust and cost-effective genotyping platform, which may find adoption in several other African antelope and animal species.  相似文献   

7.
8.
9.
The Mongolian cattle are one of the most widespread breeds with strictly Bos taurus morphological features in northern China. In our current study, we presented a diversity of mitochondrial DNA (mtDNA) D-loop region and Y chromosome SNP markers in 25 male and 8 female samples of Mongolian cattle from the Xinjiang Uygur autonomous region in Western China, and detected 21 B. taurus and four Bos indicus (zebu) mtDNA haplotypes. Among four B. indicus mtDNA haplotypes, two haplotypes belonged to I1 haplogroup and the remaining two haplotypes belonged to I2 haplogroup. In contrast, all 25 male Mongolian cattle samples revealed B. taurus Y chromosome haplotype and no B. indicus haplotypes were found. Historical and archeological records indicate that B. taurus was introduced to Xinjiang during the second millennium BC and B. indicus appeared in this region by the second century AD. The two types of cattle coexisted for many centuries in Xinjiang, as depicted in clay and wooden figurines unearthed in the Astana cemetery in Turfan (3rd–8th century AD). Multiple lines of evidence suggest that the earliest B. indicus introgression in the Mongolian cattle may have occurred during the 2nd–7th centuries AD through the Silk Road around the Xinjiang region. This conclusion differs from the previous hypothesis that zebu introgression to Mongolian cattle happened during the Mongol Empire era in the 13th century.  相似文献   

10.
Li C  Li Y  Xu J  Lv J  Ma Y  Shao T  Gong B  Tan R  Xiao Y  Li X 《Gene》2011,489(2):119-129
Detection of the synergetic effects between variants, such as single-nucleotide polymorphisms (SNPs), is crucial for understanding the genetic characters of complex diseases. Here, we proposed a two-step approach to detect differentially inherited SNP modules (synergetic SNP units) from a SNP network. First, SNP-SNP interactions are identified based on prior biological knowledge, such as their adjacency on the chromosome or degree of relatedness between the functional relationships of their genes. These interactions form SNP networks. Second, disease-risk SNP modules (or sub-networks) are prioritised by their differentially inherited properties in IBD (Identity by Descent) profiles of affected and unaffected sibpairs. The search process is driven by the disease information and follows the structure of a SNP network. Simulation studies have indicated that this approach achieves high accuracy and a low false-positive rate in the identification of known disease-susceptible SNPs. Applying this method to an alcoholism dataset, we found that flexible patterns of susceptible SNP combinations do play a role in complex diseases, and some known genes were detected through these risk SNP modules. One example is GRM7, a known alcoholism gene successfully detected by a SNP module comprised of two SNPs, but neither of the two SNPs was significantly associated with the disease in single-locus analysis. These identified genes are also enriched in some pathways associated with alcoholism, including the calcium signalling pathway, axon guidance and neuroactive ligand-receptor interaction. The integration of network biology and genetic analysis provides putative functional bridges between genetic variants and candidate genes or pathways, thereby providing new insight into the aetiology of complex diseases.  相似文献   

11.
The African buffalo, Syncerus caffer, is one of the most abundant and ecologically important species of megafauna in the savannah ecosystem. It is an important prey species, as well as a host for a vast array of nematodes, pathogens and infectious diseases, such as bovine tuberculosis and corridor disease. Large-scale SNP discovery in this species would greatly facilitate further research into the area of host genetics and disease susceptibility, as well as provide a wealth of sequence information for other conservation and genomics studies. We sequenced pools of Cape buffalo DNA from a total of 9 animals, on an ABI SOLiD4 sequencer. The resulting short reads were mapped to the UMD3.1 Bos taurus genome assembly using both BWA and Bowtie software packages. A mean depth of 2.7× coverage over the mapped regions was obtained. Btau4 gene annotation was added to all SNPs identified within gene regions. Bowtie and BWA identified a maximum of 2,222,665 and 276,847 SNPs within the buffalo respectively, depending on analysis method. A panel of 173 SNPs was validated by fluorescent genotyping in 87 individuals. 27 SNPs failed to amplify, and of the remaining 146 SNPs, 43–54% of the Bowtie SNPs and 57–58% of the BWA SNPs were confirmed as polymorphic. dN/dS ratios found no evidence of positive selection, and although there were genes that appeared to be under negative selection, these were more likely to be slowly evolving house-keeping genes.  相似文献   

12.
Genetic (or ‘genomic’) imprinting, a feature of approximately 100 mammalian genes, results in monoallelic expression from one of the two parentally inherited chromosomes. To date, most studies have been directed on imprinted genes in murine or human models; however, there is burgeoning interest in the effects of imprinted genes in domestic livestock species. In particular, attention has focused on imprinted genes that influence foetal growth and development and that are associated with several economically important production traits in cattle, sheep and pigs. We have re-sequenced regions in 20 candidate bovine imprinted genes in order to validate single nucleotide polymorphisms (SNPs) that may influence important production traits in cattle. Putative SNPs detected via re-sequencing were subsequently re-formatted for high-throughput SNP genotyping in 185 cattle samples comprising 138 performance-tested European Bos taurus (all Limousin bulls), 29 African B. taurus and 18 Indian B. indicus samples. Analysis of the resulting genotypic data identified 117 validated SNPs. Preliminary genotype–phenotype association analyses using 83 SNPs that were polymorphic in the Limousin samples with minor allele frequencies ⩾0.05 revealed significant associations between two candidate bovine imprinted genes and a range of important beef production traits: average daily gain, average feed intake, live weight, feed conversion ratio, residual feed intake and residual gain. These genes were the Ras protein-specific guanine nucleotide releasing factor gene (RASGRF1) and the zinc finger, imprinted 2 gene (ZIM2). Despite the relatively small sample size used in these analyses, the observed associations with production traits are supported by the purported biological function of the RASGRF1 and ZIM2 gene products. These results support the hypothesis that imprinted genes contribute significantly to important complex production traits in cattle. Furthermore, these SNPs may be usefully incorporated into future marker-assisted and genomic selection breeding schemes.  相似文献   

13.
Body measurement traits, influenced by genes and environmental factors, play numerous important roles in the value assessment of productivity and economy. Growth differentiate factor 5 (GDF5), involved in the development and maintenance of bone and cartilage, is an important candidate gene for body measurement traits selection through marker-assisted selection (MAS). In this study, based on the PCR-RFLP technology, we discovered and evaluated the potential association of the single nucleotide polymorphism (SNP) (T586C in exon 1) of the bovine GDF5 gene with body measurement traits in 985 Bos taurus breed, 42 Bos indicus breed and 76 Bos indicus × Bos taurus individuals. As the SNP marker, there were the significant effects on the Body length (BL) in the Bos taurus (BT) and Bos indicus × Bos taurus (BMY) populations (P < 0.05). In BT population, animals with the genotype TT had lower mean values for BL and Hip width (HW) than these with the TC and CC genotype (P < 0.01). In BMY population, animals with the genotype TC had lower mean values for BL than these with the genotype CC (P < 0.05). These results suggest that the SNP of the GDF5 gene could be a very useful genetic marker for body measurement traits in the bovine reproduction and breeding.  相似文献   

14.
The number of oocytes recovered from Bos taurus indicus females subjected to ovum pick-up averaged two to four times greater compared to Bos taurus taurus females. The objective of the present study was to test the hypothesis that this difference in oocyte yield was due to more preantral follicles in the ovaries of Bos indicus females. Ovaries (n = 64) from Nelore (Bos indicus) fetuses (n = 10), heifers (n = 12), and cows (n = 10), and Aberdeen Angus (Bos taurus) fetuses (n = 10), heifers (n = 12), and cows (n = 10) were cut longitudinally into halves, fixed, and processed for histological evaluation. The number of preantral follicles was estimated by counting them in each histological section, using the oocyte nucleus as a marker and employing a correction factor. The average number of preantral follicles in the ovaries of Bos indicus vs Bos taurus was (mean ± SD) 143,929 ± 64,028 vs 285,155 ± 325,195 for fetuses, 76,851 ± 78,605 vs 109,673 ± 86,078 for heifers, and 39,438 ± 31,017 vs 89,577 ± 86,315 for cows (P > 0.05). The number of preantral follicles varied greatly among individual animals within the same category, as well as between breeds. In conclusion, we inferred that the higher oocyte yield from Bos indicus females was not due to a greater ovarian reserve of preantral follicles. Therefore, mechanisms controlling follicle development after the preantral stage likely accounted for differences between Bos indicus and Bos taurus females in number of oocytes retrieved at ovum pick-up.  相似文献   

15.
16.
《Genomics》2020,112(1):108-113
The study was undertaken to decipher the microRNA (miRNA) related markers associated with corpus luteum (CL) tropism in buffalo. The data obtained from deep sequencing of CL tissue from different physiological stages was mined in silico for the identification of miRNA-related markers (SSR & SNP). From the present study, 5 annotated and 176 unannotated miRNA were deduced while comparing with Bos taurus genome. In addition, 4 SSRs and 9 SNPs were deduced from the miRNA sequences. These SSRs were on the genes viz. Eukaryotic translation initiation factor 1-like, myocyte enhancer factor 2A, beta casein, T cell receptor gamma cluster 1. The SNP positions on genes viz. PYGO1 (Pygopus family PHD finger 1), LOC100337244 (Multidrug resistance-associated protein 4), FTH1 (Ferritin heavy chain 1), LOC788634 (BOLA class I histocompatibility antigen), PLXND1 (Plexin D1) and UBC (Ubiquitin C) show that these genes play critical role in CL tropism during estrous cycle in buffalo.  相似文献   

17.
18.
Toll-like receptor 4 gene (TLR4) that recognizes the Gram negative bacterial ligand LPS was sequenced in the Bos indicus Sahiwal cattle breed. Ninety four single nucleotide polymorphisms (SNPs) were detected within 10.8 kb gene region. Seventeen of the SNPs were in the coding regions and the one at position 9589(A > G) in exon3 resulted in an amino acid change from Valine to Isoleucine. These SNPs led to generation of 27 TLR4 gene haplotypes. All the Sahiwal animals studied presently showed the occurrence of the genotype CC at gene position 9662, which codes for the amino acid threonine at position 674 of the TLR4 protein, and which had been reported to be associated with lower somatic cell score and, therefore, a lower susceptibility to mastitis, in Taurus cattle. This nucleotide configuration of the Toll-like receptor 4 gene of the Bos indicus Sahiwal cattle breed could possibly indicate toward a lower susceptibility to mastitis in the Sahiwal animals. Monocyte chemo-attractant protein-1 (CCL2) gene encoding for small inducible cytokine A2 that belongs to the CC chemokine family was also sequence characterized in these Sahiwal animals. The CCL2 gene was observed to have 12 polymorphic sites in 3.3 kb region of which one SNP at position 2500 (A > G) in exon 3 resulted in amino acid change from Valine to Isoleucine at position 46 of the mature CCL2 peptide. Seventeen haplotypes of the CCL2 gene were predicted corresponding to 12 genotypes detected.  相似文献   

19.
Bos taurus-Bos indicus twin calves were produced by transferring Day 6–8 Bos indicus or Bos taurus embryos to previously inseminated Bos taurus or Bos indicus cows. Embryos were transferred to 112 recipients of which 64 (57.1%) were diagnosed as pregnant by rectal palpation at 7–8 weeks gestation. Twin foetuses were diagnosed in 38 (65.5%) of 58 cows in which the location and number of foetuses was recorded. Substantial foetal losses occurred after 7–8 weeks and only 44 cows calved giving 21 sets of twins and 23 singletons. Six of the single calves were from transferred embryos. The duration of gestation of the twin pregnancies (282 days) was similar to that of single Bos taurus pregnancies (282 days for Jerseys and 286 days for Friesians) and 14 days shorter than single Bos indicus pregnancies (296 days). Consequently Bos indicus members of mixed-species twins were premature at birth and required intensive care to ensure their survival.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号