首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Tie-Zhong Cui 《FEBS letters》2010,584(4):652-873
The length of the isoprenoid-side chain in ubiquinone, an essential component of the electron transport chain, is defined by poly-prenyl diphosphate synthase, which comprises either homomers (e.g., IspB in Escherichia coli) or heteromers (e.g., decaprenyl diphosphate synthase (Dps1) and D-less polyprenyl diphosphate synthase (Dlp1) in Schizosaccharomyces pombe and in humans). We found that expression of either dlp1 or dps1 recovered the thermo-sensitive growth of an E. coli ispBR321A mutant and restored IspB activity and production of Coenzyme Q-8. IspB interacted with Dlp1 (or Dps1), forming a high-molecular weight complex that stabilized IspB, leading to full functionality.

Structured summary:

MINT-7385426:Dlp1 (uniprotkb:Q86YH6) and IspB (uniprotkb:P0AD57) physically interact (MI:0915) by blue native page (MI:0276)MINT-7385083, MINT-7385058:IspB (uniprotkb:P0AD57) and IspB (uniprotkb:P0AD57) bind (MI:0407) by blue native page (MI:0276)MINT-7385413:Dlp1 (uniprotkb:O13851) and IspB (uniprotkb:P0AD57) physically interact (MI:0915) by blue native page (MI:0276)MINT-7385024:IspB (uniprotkb:P0AD57) physically interacts (MI:0915) with Dps1 (uniprotkb:O43091) by pull down (MI:0096)MINT-7385041:IspB (uniprotkb:P0AD57) physically interacts (MI:0915) with Dlp1 (uniprotkb:O13851) by pull down (MI:0096)MINT-7385388:IspB (uniprotkb:P0AD57) and Dps1 (uniprotkb:O43091) physically interact (MI:0915) by blue native page (MI:0276)  相似文献   

2.
Farnesyl diphosphate (FPP) synthase (FPS: EC.2.5.1.1, EC.2.5.1.10) catalyzes the formation of FPP from isopentenyl diphosphate and dimethylallyl diphosphate via two successive condensation reactions. A cDNA designated CrFPS, encoding a protein showing high similarities with trans-type short FPS isoforms, was isolated from the Madagascar periwinkle (Catharanthus roseus). This cDNA was shown to functionally complement the lethal FPS deletion mutant in the yeast Saccharomyces cerevisiae. At the subcellular level, while short FPS isoforms are usually described as cytosolic proteins, we showed, using transient transformations of C. roseus cells with yellow fluorescent protein-fused constructs, that CrFPS is targeted to peroxisomes. This finding is discussed in relation to the subcellular distribution of FPS isoforms in plants and animals and opens new perspectives towards the understanding of isoprenoid biosynthesis.  相似文献   

3.
Farnesyl pyrophosphate synthase (FPPS EC 2.5.1.10) catalyzes the production of farnesyl pyrophosphate (FPP), which is a key precursor for many sesquiterpenoids such as floral scent and defense volatiles against herbivore attack. Here we report a new full-length cDNA encoding farnesyl diphosphate synthase from Hedychium coronarium. The open reading frame for full-length HcFPPS encodes a protein of 356 amino acids, which is 1068 nucleotides long with calculated molecular mass of 40.7 kDa. Phylogenetic tree analysis indicates that HcFPPS belongs to the plant FPPS super-family and has strong relationship with FPPS from Musa acuminata. Expression of the HcFPPS gene in Escherichia coli yielded FPPS activity. Tissue-specific and developmental analyses of the HcFPPS mRNA and corresponding volatile sesquiterpenoid levels in H. coronarium flowers revealed that the HcFPPS might play a regulatory role in floral volatile sesquiterpenoid biosynthesis. The emission of the FPP-derived volatile terpenoid correlates with strong expression of HcFPPS induced by mechanical wounding and Udaspes folus-damage in leaves, which suggests that HcFPPS may have an important ecological function in H. coronarium vegetative organ.  相似文献   

4.
The farnesyl diphosphate synthase (FPPS) has previously been characterized in trypanosomes as an essential enzyme for their survival and as the target for bisphosphonates, drugs that are effective both in vitro and in vivo against these parasites. Enzymes from the isoprenoid pathway have been assigned to different compartments in eukaryotes, including trypanosomatids. We here report that FPPS localizes to the cytoplasm of both Trypanosoma cruzi and T. brucei, and is not present in other organelles such as the mitochondria and glycosomes.  相似文献   

5.
6.
The mevalonate pathway is the most diverse metabolic route resulting in the biosynthesis of at least 30,000 isoprenoid compounds, many of which, such as sterols or dolichols, are indispensable for living cells. In the filamentous fungus Trichoderma of major biotechnological interest isoprenoid metabolites are also involved in the biocontrol processes giving the mevalonate pathway an additional significance. On the other hand, little is known about genes coding for enzymes of the mevalonate pathway in Trichoderma.  相似文献   

7.
李锐  陈晓仪  张阳  张甜甜  赵琦 《广西植物》2018,38(9):1111-1116
为了探究卷叶贝母(Fritillaria cirrhosa)法尼基焦磷酸合酶基因(FcFPPS)是否参与甾类生物碱合成、萜类合成等代谢过程,该研究基于转录组测序结果,通过PCR技术克隆卷叶贝母FPPS基因(FcFPPS)开放阅读框(Open Reading Frame,ORF)序列,运用生物信息学方法对该基因进行分析,预测其编码蛋白的结构与功能,并通过qRT-PCR检测FcFPPS基因在野生鳞茎和再生鳞茎(通过激素组合刺激获得的组织培养物)中的表达情况,以及利用煎煮法测定野生鳞茎和再生鳞茎的总生物碱含量。结果表明:获得了1 059bp的FcFPPS ORF片段,编码352个氨基酸,并与NCBI上公布的麝香百合、虎眼万年青、春兰等植物FPPS蛋白的相似性在85%以上;对FcFPPS蛋白的二级、三级结构预测发现FcFPPS蛋白主要由α螺旋构成;qRT-PCR与总生物碱含量测定结果显示FcFPPS基因的表达水平与总生物碱含量的变化趋势一致,都是再生鳞茎高于野生鳞茎。FcFPPS蛋白质特征区及同源性等生物信息学分析结合qRT-PCR的测定结果证明FcFPPS可能是一个有生物学功能的蛋白质,这为后续利用基因工程手段提高卷叶贝母中生物碱含量奠定了理论基础。  相似文献   

8.
The incorporation of [14C]mevalonate and [14C]isopentenyl diphosphate into geranylgeranyl diphosphate was investigated in in vitro systems from Cucurbita pepo (pumpkin) endosperm and from Avena sativa etioplasts. Mevalonate incorporation was effectively inhibited in the pumpkin system by geranylgeranyl diphosphate and geranylgeranyl monophosphate but less effectively by phytyl diphosphate or inorganic diphosphate. Membrane lipids, geranyllinalool, or lecithin enhanced mevalonate incorporation in the Cucurbita system. Incorporation of isopentenyl diphosphate was also enhanced by lecithin and inhibited by geranylgeranyl diphosphate in the Cucurbita system. No lipid enhancement was found in the Avena system; inhibition by GGPP required a much higher GGPP concentration than in the Cucurbita system.  相似文献   

9.
The gene of (all-E) geranylfarnesyl diphosphate synthase that is responsible for the biosynthesis of methanophenazine, an electron carrier utilized for methanogenesis, was cloned from a methanogenic archaeon Methanosarcina mazei Gö1. The properties of the recombinant enzyme and the results of phylogenetic analysis suggest that the enzyme is closely related to (all-E) prenyl diphosphate synthases that are responsible for the biosynthesis of respiratory quinones, rather than to the enzymes involved in the biosynthesis of archaeal membrane lipids, including (all-E) geranylfarnesyl diphosphate synthase from a thermophilic archaeon.  相似文献   

10.
Mycobacterium tuberculosis (Mtb) has a highly complex cell wall, which is required for both bacterial survival and infection. Cell wall biosynthesis is dependent on decaprenyl diphosphate as a glyco-carrier, which is hence an essential metabolite in this pathogen. Previous biochemical studies indicated (E)-geranyl diphosphate (GPP) is required for the synthesis of decaprenyl diphosphate. Here we demonstrate that Rv0989c encodes the “missing” GPP synthase, representing the first such enzyme to be characterized from bacteria, and which presumably is involved in decaprenyl diphosphate biosynthesis in Mtb. Our investigation also has revealed previously unrecognized substrate plasticity of the farnesyl diphosphate synthases from Mtb, resolving previous discrepancies between biochemical and genetic studies of cell wall biosynthesis.  相似文献   

11.
12.
Nitrogen-containing bisphosphonates (N-BPs) such as zoledronic acid (ZOL) are the gold standard treatment for diseases of excessive bone resorption. N-BPs inactivate osteoclasts via inhibition of farnesyl diphosphate synthase (FPPS), thereby preventing the prenylation of essential small GTPases. Not all patients respond to N-BP therapy to the same extent, and some patients, for example with tumour-associated bone disease or Paget's disease, appear to develop resistance to N-BPs. The extent to which upregulation of FPPS might contribute to these phenomena is not clear. Using quantitative PCR and western blot analysis we show that levels of FPPS mRNA and protein can be upregulated in HeLa cells by culturing in lipoprotein deficient serum (LDS) or by over-expression of SREBP-1a. Upregulated, endogenous FPPS was predominantly localised to the cytosol and did not co-localise with peroxisomal or mitochondrial markers. Upregulation of endogenous FPPS conferred resistance to the inhibitory effect of low concentrations of ZOL on the prenylation of the small GTPase Rap1a. These observations suggest that an increase in the expression of endogenous FPPS could confer at least partial resistance to the pharmacological effect of N-BP drugs such as ZOL in vivo.  相似文献   

13.
姜鸣  霍棠  吕淑敏  张雅林 《昆虫学报》2012,55(7):860-868
3-羟甲基戊二酰辅酶A-还原酶(3-hydroxy-3-methylglutaryl coenzyme A reductase, HMGR)是甲羟戊酸途径的关键酶。获得芫菁体内HMGR基因信息是确定甲羟戊酸途径与斑蝥素合成相关性的基础。本研究利用RACE技术从细纹豆芫菁Epicauta mannerheimi (Maklin)体内克隆获得HMGR基因全长cDNA序列, 命名为EmHMGR(GenBank登录号为JQ690539)。该基因全长3 118 bp, 其中5′端非翻译区178 bp, 3′端非翻译区414 bp, 开放阅读框2 526 bp, 编码842个氨基酸。推测的蛋白质分子量为92.8 kDa, 理论等电点为6.0, 预测分子式为C4135H6604N1098O1216S50, 不稳定系数为43.37, 总亲水性系数为0.091, 为疏水性不稳定蛋白。序列分析发现该基因编码的蛋白与已报道的其他昆虫HMGR的氨基酸序列一致性达50%以上, 而且包含HMGR_Class I保守功能域、 固醇敏感多肽区及HMGR蛋白的其他保守功能位点。系统进化分析发现该基因与叶甲科昆虫HMGR基因的关系最近。本研究首次从芫菁科昆虫体内克隆获得甲羟戊酸途径的关键酶EmHMGR基因, 为后期芫菁体内斑蝥素生物合成途径的研究奠定了基础。  相似文献   

14.
京大戟是多年生草本药用植物,入药部分是其干燥根,但可入药的京大戟资源由于生长缓慢以及环境污染的加剧而越发匮乏,因此解决大戟资源日益紧张的问题是当今药用植物资源开发与利用方向的重要课题。京大戟含有三萜类、二萜类、黄酮类等丰富的活性成分,一些常见药用植物的有效成分是三萜类化合物,其在抗病毒、抗肿瘤、免疫调节等方面具有很好的活性。对植物萜类物质代谢起重要作用的关键酶,如3-羟基,3-甲基戊二酰辅酶A还原酶(hmgr)、鲨烯合酶(sqs)、法尼基焦磷酸合酶(fps)的基因克隆及活性研究取得了进展和突破,但通过调控萜类物质代谢途径中关键酶基因的表达来诱导终产物合成的研究鲜有报道。通过研究大戟萜类物质代谢途径进而利用基因工程手段提升目的物质的产量来解决京大戟药源短缺问题具有重要意义。该研究以大戟愈伤组织为材料,使用茉莉酸甲酯分别按时间梯度和浓度梯度进行诱导,将诱导后的愈伤组织分为两部分:一部分提取其总RNA,以actin为内参基因进行反转录,实时定量RT-PCR分析大戟三萜类代谢途径中hmgr、sqs与fps基因的相对表达差异;另一部分用于提取其总三萜并使用分光光度法进行含量测定。实时定量RT-PCR分析结果表明,茉莉酸甲酯可诱导3个基因的表达,但其表达模式不一样。相应的京大戟愈伤组织中总三萜的含量明显提高,最高可较未处理样品增加27%。研究结果可为茉莉酸甲酯促进药用植物大戟三萜类物质积累的分子机制研究提供参考。  相似文献   

15.
16.
Rui X  Caiqin L  Wangjin L  Juan D  Zehuai W  Jianguo L 《Gene》2012,498(1):28-35
3-Hydroxy-3-methylglutaryl coenzyme A reductase (HMGR, EC: 1.1.1.34), an enzyme catalyzing the first committed step in the mevalonic acid (MVA) pathway for the biosynthesis of isoprenoids, has been reported to be involved in the fruit size determination through the regulation of early cell division. In litchi, the cell number achieved by this early cell division determines the final fruit size, but whether HMGR plays any role in this process was unknown. In this study, we set out to address this question with gene cloning and expression analysis in fruits of different pheno- or genotypes. We found that the litchi genome includes two HMGR homologues, denoted as LcHMG1 and LcHMG2. Despite 70% sequence identity at the amino acid level, they exhibited distinct expression patterns during litchi fruit development. LcHMG1 expression was highest in the early stage of fruit development, correlated with the high level of cell division. Absolute levels of LcHMG1 expression varied among fruits of different pheno- or genotypes, with expression in large-fruited types reaching higher levels for longer duration compared to that in small-fruited types. The expression patterns for LcHMG1 strongly suggest that this gene is involved in early cell division and fruit size determination in litchi. In contrast, LcHMG2 was most highly expressed in the late stage of fruit development, in association with biosynthesis of isoprenoid compounds required for later cell enlargement. These findings provided new insights on the function of HMGR genes during fruit development.  相似文献   

17.
【目的】3-羟基-3-甲基戊二酰辅酶A还原酶(HMGR)是保幼激素(JH)合成途径的限速酶。麦红吸浆虫Sitodiplosis mosellana是一种典型的专性幼虫滞育昆虫。本研究旨在探讨HMGR基因在麦红吸浆虫滞育和发育变态过程中的作用。【方法】通过RT-PCR和RACE技术克隆麦红吸浆虫滞育前幼虫HMGR基因全长cDNA序列;利用生物信息学软件分析HMGR基因核苷酸和其编码的蛋白氨基酸序列特性;采用qPCR技术测定其在麦红吸浆虫滞育不同时期3龄幼虫及不同发育阶段(1-2龄幼虫、预蛹、初蛹、中蛹和后蛹以及雌雄成虫)中的mRNA表达水平。【结果】克隆获得一条麦红吸浆虫HMGR基因全长cDNA序列,命名为SmHMGR(GenBank登录号: MG876766)。该基因全长2 548 bp,其中开放阅读框长2 328 bp,编码775个氨基酸,预测的蛋白分子量为84.16 kD,理论等电点为8.29。序列分析发现该基因编码的蛋白具有HMGR蛋白家族典型的HMG-CoA-reductase-classⅠ催化功能域及其他保守功能基序;序列比对和系统发育分析表明,SmHMGR与达氏按蚊Anopheles darling等长角亚目(Nematocera)昆虫HMGR的相似性最高、亲缘关系最近。SmHMGR在麦红吸浆虫滞育前的3龄早期幼虫中表达量显著升高,进入滞育后一直维持较高水平,并在滞育后静息阶段的当年12月至翌年1月达到最高。SmHMGR在蛹期表达量低于幼虫期,预蛹期表达量最低;在雌成虫中表达量显著高于在蛹和雄成虫中的表达量。【结论】SmHMGR的表达与麦红吸浆虫发育密切相关,可能在滞育诱导、维持及滞育后静息状态的维持及生殖中发挥作用,其表达量的降低可能参与了幼虫到蛹的变态。  相似文献   

18.
The 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) catalyzes the conversion of HMG-CoA to mevalonate (MVA), which is a rate-limiting step in the isoprenoid biosynthesis via the MVA pathway. In this study, the full-length cDNA encoding HMGR (designated as SmHMGR2, GenBank accession no. FJ747636) was isolated from Salvia miltiorrhiza by rapid amplification of cDNA ends (RACE). The cloned gene was then transformed into the hairy root of S. miltiorrhiza, and the enzyme activity and production of diterpenoid tanshinones and squalene were monitored. The full-length cDNA of SmHMGR2 comprises 1959 bp, with a 1653-bp open reading frame encoding a 550-amino-acid protein. Molecular modeling showed that SmHMGR2 is a new HMGR with a spatial structure similar to other plant HMGRs. SmHMGR2 contains two HMG-CoA-binding motifs and two NADP(H)-binding motifs. The SmHMGR2 catalytic domain can form a homodimer. The deduced protein has an isoelectric point of 6.28 and a calculated molecular weight of approximately 58.67 kDa. Sequence comparison analysis showed that SmHMGR2 had the highest homology to HMGR from Atractylodes lancea. As expected, a phylogenetic tree analysis indicates that SmHMGR2 belongs to plant HMGR group. Tissue expression pattern analysis shows that SmHMGR2 is strongly expressed in the leaves, stem, and roots. Functional complementation of SmHMGR2 in HMGR-deficient mutant yeast JRY2394 demonstrates that SmHMGR2 mediates the MVA biosynthesis in yeasts. Overexpression of SmHMGR2 increased enzyme activity and enhanced the production of tanshinones and squalene in cultured hairy roots of S. miltiorrhiza. Our DNA gel blot analysis has confirmed the presence and integration of the associated SmHMGR2 gene. SmHMGR2 is a novel and important enzyme involved in the biosynthesis of diterpenoid tanshinones in S. miltiorrhiza.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号