首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spinal muscular atrophy (SMA) is a common and lethal autosomal recessive neurodegenerative disorder, which is caused by mutations of the survival motor neuron 1 (SMN1) gene. Additionally, the phenotype is modified by several genes nearby SMN1 in the 5q13 region. In this study, we analyzed mutations in SMN1 and quantified the modifying genes, including SMN2, NAIP, GTF2H2, and H4F5 by polymerase chain reaction–restriction fragment length polymorphism (PCR-RFLP), multiplex ligation-dependent probe amplification (MLPA), TA cloning, allele-specific long-range PCR, and Sanger sequencing in 157 SMA patients. Most SMA patients (94.90%) possessed a homozygous SMN1 deletion, while 10 patients demonstrated only the absence of exon 7, but the presence of exon 8. Two missense mutations (c.689 C > T and c.844 C > T) were identified in 2 patients who both carried a single copy of SMN1. We found inverse correlations between SMN2, the NAIP copy number, and the clinical severity of the disease. Furthermore, 7 severe type I patients possessed large-scale deletions, including SMN1, NAIP, and GTF2H2. We conclude that SMN1 gene conversion, SMN1 subtle mutations, SMN2 copy number, and the extent of deletion in the 5q13 region should all be considered in the genotype–phenotype analysis of SMA.  相似文献   

2.
Genomic rearrangements of chromosome 15q11–q13 are responsible for diverse phenotypes including intellectual disabilities and autism. 15q11.2 deletion, implicating common PWS/AS breakpoints BP1–BP2, has been described in patients with delayed motor and speech development and behavioural problems. Here we report the clinical and molecular characterisation of a maternally inherited BP1–BP2 deletion in two siblings with intellectual, motor and speech delay, autistic syndrome disorder and several dysmorphic features. One of the patients was also a carrier of an FMR1 allele in the low premutation range. The four genes within the deletion were under-expressed in all deletion carriers but FMR1 mRNA levels remained normal. Our results suggest that BP1-BP2 deletion could be considered as a risk factor for neuropsychological phenotypes and that it presents with variable clinical expressivity.  相似文献   

3.
1p36 deletion (monosomy 1p36) is one of the most common terminal deletions observed in humans, characterized by special facial features, mental retardation, heart defects, development delay and epilepsy. Previously, we reported molecular findings in patients with limb, congenital heart disease (CHD) and other malformations with SNP-array. In a syndromic patient of the same cohort, we detected a small deletion of 1p36.33–p36.32 containing SKI (Sloan–Kettering Institute protooncoprotein). Recently, dominant mutations in SKI were identified to be correlated with Shprintzen–Goldberg syndrome. Retrospective examination revealed this patient with limb malformations, CHD, epilepsy and mild development delay. Together with previous reports, our study suggests that the 1p36.33–1p36.32 deletion encompassing SKI may represents a previous undescribed microdeletion disorder.  相似文献   

4.
Heterozygous de novo mutations in SOX2 have been reported in approximately 10–20% of patients with unilateral or bilateral anophthalmia or microphthalmia. An additional phenotype of hypopituitarism, with anterior pituitary hypoplasia and hypogonadotropic hypogonadism, has been reported in patients carrying SOX2 alterations. We report a novel heterozygous mutation in the SOX2 gene in a male affected with congenital bilateral anophthalmia, hypogonadotrophic hypogonadism and growth hormone deficiency. The mutation we describe is a cytosine deletion in position 905 (c905delC) which causes frameshift and an aberrant C-terminal domain. Our report highlights the fact that subjects affected with eye anomalies and harboring SOX2 mutations are at high risk for gonadotropin deficiency, which has important implications for their clinical management.  相似文献   

5.
We report on a consanguineous Pakistani family with a severe congenital microcephaly syndrome resembling the Seckel syndrome and Jawad syndrome. The affected individuals in this family were born to consanguineous parents of whom the mother presented with mild intellectual disability (ID), epilepsy and diabetes mellitus. The two living affected brothers presented with microcephaly, white matter disease of the brain, hyponychia, dysmorphic facial features with synophrys, epilepsy, diabetes mellitus and ID. Genotyping with a 250K SNP array in both affected brothers revealed an 18 MB homozygous region on chromosome 18p11.21-q12.1 encompassing the SCKL2 locus of the Seckel and Jawad syndromes. Sequencing of the RBBP8 gene, underlying the Seckel and Jawad syndromes, identified the novel mutation c.919A > G, p.Arg307Gly, segregating in a recessive manner in the family. In addition, in the two affected brothers and their mother we have also found a heterozygous 607 kb deletion, encompassing exons 13–19 of NRXN1. Bidirectional sequencing of the coding exons of NRXN1 did not reveal any other mutation on the other allele. It thus appears that the phenotype of the mildly affected mother can be explained by the NRXN1 deletion, whereas the more severe and complex microcephalic phenotype of the two affected brothers is due to the simultaneous deletion in NRXN1 and the homozygous missense mutation affecting RBBP8.  相似文献   

6.
Autosomal dominant polycystic kidney disease is the most common human monogenic disorder and is caused by mutations in the PKD1 or PKD2 genes. Most patients with the disease present mutations in PKD1, and a considerable number of these alterations are single base substitutions within the coding sequence that are usually predicted to lead to missense or synonymous mutations. There is growing evidence that some of these mutations can be detrimental by affecting the pre-mRNA splicing process. The aim of our study was to test PKD1 mutations, described as missense or synonymous in the literature or databases, for their effects on exon inclusion. Bioinformatics tools were used to select mutations with a potential effect on pre-mRNA splicing. Mutations were experimentally tested using minigene assays. Exons and adjacent intronic sequences were PCR-amplified and cloned in the splicing reporter minigene, and selected mutations were introduced by site-directed mutagenesis. Minigenes were transfected into kidney derived cell lines. RNA from cultured cells was analyzed by RT-PCR and DNA sequencing. Analysis of thirty-three PKD1 exonic mutations revealed three mutations that induce splicing defects. The substitution c.11156G > A, previously predicted as missense mutation p.R3719Q, abolished the donor splice site of intron 38 and resulted in the incorporation of exon 38 with 117 bp of intron 38 and skipping of exon 39. Two synonymous variants, c.327A > T (p.G109G) and c.11257C > A (p.R3753R), generated strong donor splice sites within exons 3 and 39 respectively, resulting in incorporation of incomplete exons. These three nucleotide substitutions represent the first PKD1 exonic mutations that induce aberrant mRNAs. Our results strengthen the importance to evaluate the consequences of presumed missense and synonymous mutations at the mRNA level.  相似文献   

7.
Tricho–rhino–phalangeal syndrome (TRPS) is a rare autosomal dominant disorder. Deletion or mutation of the TRPS1 gene leads to the tricho–rhino–phalangeal syndromes type I or type III. In this article, we describe a Chinese patient affected with type I TRPS and showing prominent pilar, rhinal and phalangeal abnormalities. Mutational screening and sequence analysis of TRPS1 gene revealed a previously unidentified four-base-pair deletion of nucleotides 1783–1786 (c.1783_1786delACTT). The mutation causes a frame shift after codon 593, introducing a premature stop codon after 637 residues in the gene sequence. This deletion is an unquestionable loss-of-function mutation, deleting all the functionally important parts of the protein. Our novel discovery indicates that sparse hair and metacarpal defects of tricho–rhino–phalangeal syndromes in this patient are due to this TRPS1 mutation. And this data further supports the critical role of TRPS1 gene in hair and partial skeleton morphogenesis.  相似文献   

8.

Aim

As a tumor suppressor, FEN1 plays an essential role in preventing tumorigenesis. Two functional germline variants (-69G > A and 4150G > T) in the FEN1 gene have been associated with DNA damage levels in coke-oven workers and multiple cancer risk in general populations. However, it is still unknown how these genetic variants are involved in breast cancer susceptibility.

Methods

We investigated the association between these polymorphisms and breast cancer risk in two independent case–control sets consisted of a total of 1100 breast cancer cases and 1400 controls. The influence of these variations on FEN1 expression was also examined using breast normal tissues.

Results

It was found that the FEN1-69GG genotypes were significantly correlated to increased risk for developing breast cancer compared with the -69AA genotype in both sets [Jinan set: odds ratios (OR) = 1.41, 95% confidence interval (CI) = 1.20–1.65, P = 1.9×10− 5; Huaian set: OR = 1.51, 95% CI = 1.22–1.86, P = 1.7×10− 4]. Similar results were observed for 4150G > T polymorphism. The genotype–phenotype correlation analyses demonstrated that the -69G or 4150G allele carriers had more than 2-fold decreased FEN1 expression in breast tissues compared with -69A or 4150T carriers, suggesting that lower FEN1 expression may lead to higher risk for malignant transformation of breast cells.

Conclusion

Our findings highlight FEN1 as an important gene in human breast carcinogenesis and genetic variants in FEN1 confer susceptibility to breast cancer.  相似文献   

9.
Recent evidences suggest that common functional polymorphisms in the promoter region of the Calpain-10 gene may have an impact on an individual's susceptibility to polycystic ovary syndrome (PCOS), but individually published results are inconclusive. Our meta-analysis is aimed to provide a more precise estimation of the relationships between Calpain-10 genetic polymorphisms and PCOS risk. An extensive literature search for relevant studies was conducted on PubMed, Embase, Web of Science, Cochrane Library, and CBM databases from inception through April 1st, 2013. This meta-analysis was performed using the STATA 12.0 software. The crude odds ratio (OR) with 95% confidence interval (CI) was calculated. Fourteen case–control studies were included with a total of 2123 PCOS patients and 3612 healthy controls. Nine common SNPs in the Calpain-10 gene were addressed. Our meta-analysis indicated that UCSNP-19, UCSNP-63 and UCSNP-45 polymorphisms in the Calpain-10 gene might be associated with increased PCOS risk. However, no statistically significant association was observed in UCSNP-43, UCSNP-22, UCSNP-43, UCSNP-45, UCSNP-56, UCSNP-58, and UCSNP-110 polymorphisms. Further subgroup analysis by ethnicity revealed that UCSNP-19, UCSNP-63 and UCSNP-45 polymorphisms might decrease the risk of PCOS among Asian populations, but not among Caucasian populations. The current meta-analysis indicates that UCSNP-19, UCSNP-63 and UCSNP-45 polymorphisms in the Calpain-10 gene may be risk factors for PCOS, especially among Asian populations.  相似文献   

10.
We sequenced nucleosomal DNA fragments of the filamentous ascomycetes Aspergillus nidulans and Aspergillus oryzae and then mapped those sequences on their genomes. We compared the GC content and nucleosome density in the exonic and intronic regions in the genes of A. nidulans and A. oryzae. Although the GC content and nucleosome density in the exonic regions tended to be higher than those in the intronic regions, the difference in the distribution of the GC content was more notable than that of the nucleosome density. Next, we compared the GC content and nucleosome density in the exonic regions of 9616 orthologous gene pairs. In both Aspergillus species, the GC content did not correlate with the nucleosome density. In addition, the Spearman's rank correlation coefficient (ρ = 0.51) between the GC content of the exonic regions of the 9616 orthologous gene pairs was higher than that (ρ = 0.31) of the nucleosome densities of A. nidulans and A. oryzae. These results strongly suggest that the GC content in the exons of the orthologous gene pairs has been conserved during evolution but the nucleosome density has varied throughout.  相似文献   

11.
Polymorphisms in Interleukin (IL)-21 have been researched in several cancers, but the association between IL-21 polymorphisms and thyroid cancer remains unclarified. This case–control study explored the role of five tagSNPs (rs12508721C > T, rs907715G > A, rs13143866G > A, rs2221903A > G and rs4833837A > G) in IL-21 gene in thyroid cancer development. IL-21 genotypes were examined in 615 thyroid cancer patients and 600 controls in Chinese population, and the associations with the risk of thyroid cancer were estimated by logistic regression. Moreover, the potential role of rs12508721C > T in thyroid cancer was further explored by biochemical assays. Compared with the rs12508721CC genotype, CT genotype presented a significantly decreased risk of thyroid cancer (adjusted odds ratios [OR] = 0.72; 95%CI = 0.57–0.94), the TT carriers had a further decreased risk of thyroid cancer (OR = 0.56; 95%CI = 0.41–0.87). Furthermore, our quantitative real-time PCR and Enzyme-linked immunosorbent assay (ELISA) results demonstrated that the presence of rs12508721T allele led to more IL-21 expression. However, no significant difference was found in genotype frequencies for other four sites between cases and controls. These findings suggested that rs12508721 polymorphism in IL-21 might be a genetic modifier for the development of thyroid cancer.  相似文献   

12.
13.
CHARGE syndrome is an autosomal dominant congenital disorder known to be caused by the haploinsufficiency of the CHD7 gene. Heterozygous mutations in the CHD7 gene have been identified in approximately 60–70% of patients clinically diagnosed with CHARGE syndrome. Although there have been many reports on the mutational spectrum of the CHD7 gene in patients with CHARGE syndrome worldwide, little is known about this syndrome in the Korean population. In this study, three Korean patients with CHARGE syndrome including one patient with Patau syndrome were evaluated for genetic analysis of the CHD7 gene using direct sequencing of all 38 exons and the flanking intronic regions. One nonsense and two novel missense mutations were identified in the CHD7 gene. Clinical symptoms caused by the missense mutations were much milder compared to the nonsense mutation, confirming the previously determined genotype–phenotype correlation in CHARGE syndrome. Our study demonstrates the importance of mutational screening of CHD7 in patients who have been diagnosed with other syndromes but display clinical features of CHARGE syndrome.  相似文献   

14.
The glioma-associated oncogene family zinc finger 3 gene (GLI3) mediates in all vertebrates hedgehog (Hh) signaling that plays an essential role in the induction and patterning of numerous cell types during invertebrate and vertebrate development. In this study, a total of 6 single nucleotide polymorphisms (SNPs: 1–6) were identified by polymerase chain reaction–single stranded conformational polymorphism (PCR–SSCP) and DNA pool sequencing, including all 13 exons and 12 exon–intron boundaries within the bovine GLI3 gene. 16 haplotypes and 13 combined genotypes were revealed and the linkage disequilibrium was assessed in 708 individuals representing three main cattle breeds from China. The statistical analyses indicated that the SNP2, 3 and 4 are associated with the body weight at birth and 6 months in Nanyang cattle population (P < 0.05). No significant association was detected between 11 combined genotypes and body weight at five different ages. Our results provide evidence that polymorphisms in the GLI3 gene are associated with growth traits, and may be used for marker-assisted selection in beef cattle breeding program.  相似文献   

15.
Establishing genetic basis of Idiopathic generalized epilepsies (IGE) is challenging because of their complex inheritance pattern and genetic heterogeneity. Kir4.1 inwardly rectifying channel (KCNJ10) is one of the independent genes reported to be associated with seizure susceptibility. In the current study we have performed a comprehensive in silico analysis of genetic variants in KCNJ10gene at functional and structural level along with a case–control analysis for the association ofrs1130183 (R271C) polymorphism in Indian patients with IGE. Age and sex matched 108epileptic patients and normal healthy controls were examined. Genotyping of KCNJ10rs1130183variation was performed using PCR-RFLP method. The risk association was determined by using odds ratio and 95% confidence interval. Functional effects of non-synonymous SNPs (nsSNPs) in KCNJ10 gene were analyzed using SIFT PolyPhen-2, I-Mutant 2.0, PANTHER and FASTSNP. Subsequently, homology modeling of protein three dimensional (3D) structures was performed using Modeller tool (9.10v) and compared the native protein with mutant for assessment of structure and stability. SIFT, PolyPhen-2, I-Mutant 2.0 and PANTHER collectively showed rs1130183, rs1130182 and rs137853073 SNPs inKCNJ10 gene affect protein structure and function. There was a considerable variation in the Root Mean Square Deviation (RMSD) value between the native and mutant structure (1.17?). Association analysis indicate KCNJ10rs1130183 did not contribute to risk of seizure susceptibility in Indian patients with IGE (OR- 0.38; 95%CI, 0.07–2.05) and T allele frequency (0.02%) was in concordance with dbSNP reports. This study identifies potential SNPs that may contribute to seizure susceptibility and further studies with the selected SNPs in larger number of samples and their functional analysis is required for understanding the variants of KCNJ10with seizure susceptibility.  相似文献   

16.

Background

Since obesity and osteoporosis present a high genetic predisposition and polymorphisms of IL-6, IL6R, LRP5, ESR1 and SP7 may influence the risk of both diseases, the aim of this study was to analyze the possible association of polymorphisms in these genes, as well as their haplotypes, with BMD variations in postmenopausal Mexican-Mestizo women with grade 2 or grade 3 obesity.

Methods

One hundred eighty unrelated postmenopausal women with grade 2 or grade 3 obesity were included. BMD was measured in total hip and lumbar spine by dual-energy X-ray absorptiometry. DNA was obtained from blood leukocytes. Rs1800795 of IL-6, rs2228145 of IL6R, rs3736228 of LRP5, rs9340799 (XbaI) and rs2234693 (PvuII), of ESR1, rs10876432 and rs2016266, of SP7 (and their haplotypes), were studied by real-time PCR allelic discrimination. Deviations from Hardy–Weinberg equilibrium were tested. Pairwise linkage disequilibrium between single nucleotide polymorphisms was calculated by direct correlation r2, and haplotype analysis was conducted.

Results

Using WHO criteria, 54.5% had grade 2 obesity, and 45.5% had grade 3 obesity. Regarding DXA results, 11.1% women had osteoporosis, 41.7% had osteopenia, and 47.2% had normal BMD. Genotype and haplotype analysis showed no significant differences with BMD variations at the lumbar spine, total hip or femoral neck.

Conclusions

We did not find a significant association between the polymorphisms analyzed or their haplotypes and BMD variations in postmenopausal women with obesity. The higher BMD observed in women with obesity could be the result of an adaptive response to the higher loading of the skeleton.  相似文献   

17.

Background/aims

Interleukin-13 (IL13) is an immunoregulatory cytokine which plays an important role in carcinogenesis through affecting tumor immunosurveillance. Many studies had reported the influence of IL13 rs1800925 and rs20541 polymorphisms on cancer risk, however, with inconclusive results. The aim of the present study was to conduct a meta-analysis to clarify the relationship.

Methods

Twenty studies including a total of 6713 cancer cases and 8693 controls for IL13 rs20541 polymorphism and 4081 cancer cases and 6202 controls for IL13 rs1800925 polymorphism were included in the meta-analysis. Data were extracted from these studies and odds ratios with corresponding 95% confidence intervals were computed to estimate the strength of the association.

Results

Overall, the IL13 rs20541 polymorphism were associated with significantly decreased cancer risk in all genetic models (AA vs. GG: OR = 0.82, 95%CI = 0.71–0.95; GA vs. GG: OR = 0.92, 95%CI = 0.85–0.99; GA/AA vs. GG: OR = 0.90, 95%CI = 0.85–0.97; AA vs. GG/GA: OR = 0.85, 95CI% = 0.74–0.98). In the stratified analyses, significant effects were found among European populations, studies with population-based controls and studies of glioma. No influence of the IL13 rs1800925 polymorphism on the overall cancer risk was observed. However, in the stratified analyses, we found the IL13 rs1800925 polymorphism was significantly associated with decreased risk for glioma (CT vs. TT: OR = 0.72, 95%CI = 0.55–0.93; CT/TT vs. TT: OR = 0.76, 95%CI = 0.62–0.89).

Conclusion

Our meta-analysis suggests that the IL13 rs20541 polymorphism contributes to susceptibility to cancer, especially for glioma; and the IL13 rs1800925 polymorphism may be associated with glioma risk.  相似文献   

18.

Background

WNT4 and SF1 genes play an important role in ovarian development. They constitute coherent candidate genes associated with premature ovarian failure (POF) pathogenesis.

Methods

We sequenced the coding region of WNT4 and SF1 in 55 Tunisian women with POF and 100 healthy controls.

Results

We identified a synonymous variation in WNT4 (c.99G>A, p.Ser33Ser) and a substitution (c.G437C) in SF1 gene inducing G146 to Ala (GGG–GCG) missense mutation. WNT4 (c.99G>A, p.Ser33Ser) was not associated with POF pathology. However, a positive association of SF1 Gly146Ala polymorphism was noted. Gly146Ala minor allele frequency was significantly higher (p = 0.029) in POF patients versus controls and Ala allele containing genotypes (p = 0.005) were positively associated with POF pathology. The carriage of 146Ala allele was also associated with a significant reduction in estradiol plasma levels.

Conclusions

SF1 Gly146Ala polymorphism seems to be associated with POF pathology in the Tunisian population likely by reducing estradiol levels.  相似文献   

19.
Urinary voiding dysfunction in childhood, manifesting as incontinence, dysuria, and urinary frequency, is a common condition. Urofacial syndrome (UFS) is a rare autosomal recessive disease characterized by facial grimacing when attempting to smile and failure of the urinary bladder to void completely despite a lack of anatomical bladder outflow obstruction or overt neurological damage. UFS individuals often have reflux of infected urine from the bladder to the upper renal tract, with a risk of kidney damage and renal failure. Whole-genome SNP mapping in one affected individual defined an autozygous region of 16 Mb on chromosome 10q23-q24, within which a 10 kb deletion encompassing exons 8 and 9 of HPSE2 was identified. Homozygous exonic deletions, nonsense mutations, and frameshift mutations in five further unrelated families confirmed HPSE2 as the causative gene for UFS. Mutations were not identified in four additional UFS patients, indicating genetic heterogeneity. We show that HPSE2 is expressed in the fetal and adult central nervous system, where it might be implicated in controlling facial expression and urinary voiding, and also in bladder smooth muscle, consistent with a role in renal tract morphology and function. Our findings have broader implications for understanding the genetic basis of lower renal tract malformations and voiding dysfunction.  相似文献   

20.

Background

Hereditary multiple exostosis represents the most frequent bone tumor disease in humans. It consists of cartilage deformities affecting the juxta-ephyseal region of long bones. Usually benign, exostosis could degenerate in malignant chondrosarcoma form in less than 5% of the cases. Being caused by mutations in the predicted tumor suppressor genes, EXT1 (chr 8q23-q24) and EXT2 (chr 11p11-p12) genes, HMEs are usually inherited with an autosomal dominant pattern, although “de novo” cases are not infrequent.

Aim

Here we present our genetic diagnostic report on the largest Southern Italy cohort of HME patients consisting of 90 subjects recruited over the last 5 years.

Results

Molecular screening performed by direct sequencing of both EXT1 and EXT2 genes, by MLPA and Array CGH analyses led to the identification of 66 mutations (56 different occurrences) and one large EXT2 deletion out of 90 patients (74.4%). The total of 21 mutations (20 different occurrences, 33.3%) and the EXT2 gene deletion were novel. In agreement with literature data, EXT1 gene mutations were scattered along all the protein sequence, while EXT2 lesions fell in the first part of the protein. Conservation, damaging prediction and 3-D modeling, in-silico, analyses, performed on three novel missense variants, confirmed that at least in two cases the novel aminoacidic changes could alter the structure stability causing a strong protein misfolding.

Conclusions

Here we present 20 novel EXT1/EXT2 mutations and one large EXT2 deletion identified in the largest Southern Italy cohort of patients affected by hereditary multiple exostosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号