首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Identification of S6K2 as a centrosome-located kinase   总被引:1,自引:0,他引:1  
Ribosomal S6 kinase 2 (S6K2) acts downstream of the mammalian target of rapamycin (mTOR). Here, we show that some S6K2 localize at the centrosome throughout the cell cycle. S6K2 is found in the pericentriolar area of the centrosome. S6K2 centrosomal localization is unaffected by serum withdrawal or treatment with rapamycin, wortmannin, U0126, or phorbol-12-myristate-13-acetate (PMA). Unlike S6K2, S6 kinase 1 (S6K1) does not localize at the centrosome, suggesting the two kinases may also have nonoverlapping functions. Our data suggest that centrosomal S6K2 may have a role in the phosphoinositide-3-kinase (PI3K)/Akt/mTOR signaling pathway that has also been detected in the centrosome.  相似文献   

2.
Muscarinic receptors subserve many functions in both peripheral and central nervous systems. Some of these processes depend on increases in protein synthesis, which may be achieved by activation of mammalian target of rapamycin (mTOR), a kinase that regulates protein translation capacity. Here, we examined the regulation of mTOR-dependent signaling pathways by muscarinic receptors in SK-N-SH human neuroblastoma cells, and in human embryonic kidney (HEK) cell lines transfected with individual muscarinic receptor subtypes. In SK-N-SH cells, the acetylcholine analog carbachol stimulated phosphorylation of the ribosomal S6 protein, a downstream target of mTOR. The sensitivity of the response to subtype-selective muscarinic receptor antagonists indicated that it was mediated by M3 receptors. Carbachol-evoked S6 phosphorylation was blocked by the mTOR inhibitor rapamycin, but was independent of phosphoinositide 3-kinase activation. The response was significantly reduced by the mitogen-activated protein kinase kinase (MEK) inhibitor U0126, which also inhibited carbachol-evoked S6 phosphorylation in HEK cells expressing M2 receptors, but was ineffective in M3 receptor-expressing HEK cells, although carbachol activated MAPK in both transfected lines. The p90 ribosomal S6 kinase has been implicated in mTOR regulation by phorbol esters, but was not activated by carbachol in any of the cell lines tested. The protein kinase C inhibitor bisindolylmaleimide I reduced carbachol-stimulated S6 phosphorylation in SK-N-SH cells, and in HEK cells expressing M3 receptors, but not in HEK cells expressing M2 receptors. The results demonstrate that multiple muscarinic receptor subtypes regulate mTOR, and that both MAPK-dependent and -independent mechanisms may mediate the response in a cell context-specific manner.  相似文献   

3.
The mammalian target of rapamycin (mTOR) is a central regulator of cell growth. mTOR exists in two functional complexes, mTORC1 and mTORC2. mTORC1 is rapamycin-sensitive, and results in phosphorylation of 4E-BP1 and S6K1. mTORC2 is proposed to regulate Akt Ser473 phosphorylation and be rapamycin-insensitive. mTORC2 consists of mTOR, mLST8, sin1, Protor/PRR5, and the rapamycin insensitive companion of mTOR (rictor). Here, we show that rapamycin regulates the phosphorylation of rictor. Rapamycin-mediated rictor dephosphorylation is time and concentration dependent, and occurs at physiologically relevant rapamycin concentrations. siRNA knockdown of mTOR also leads to rictor dephosphorylation, suggesting that rictor phosphorylation is mediated by mTOR or one of its downstream targets. Rictor phosphorylation induced by serum, insulin and insulin-like growth factor is blocked by rapamycin. Rictor dephosphorylation is not associated with dephosphorylation of Akt Ser473. Further work is needed to better characterize the mechanism of rictor regulation and its role in rapamycin-mediated growth inhibition.  相似文献   

4.
Rapamycin has been proven to effectively inhibit the activation of primordial follicles while cisplatin‐induced the loss of primordial follicles due to the over‐activation of the primordial follicle stockpile. Whether rapamycin could inhibit the loss of primordial follicles induced by cisplatin is still unknown. The ovaries of neonatal Sprague Dawley rats were cultured in vitro in different doses of rapamycin (0.08, 0.16, and 0.32 μg/ml) and cisplatin (0.1, 0.4, and 0.8 μg/ml). The immature BALB/c mice were administered cisplatin with or without rapamycin by intraperitoneal injection. Ovaries were collected to analyze the histomorphology, the messenger RNA (mRNA) expression of anti‐Mullerian hormone (AMH), growth differentiation factor 9 (GDF9), and bone morphogenetic protein 15 (BMP15) and the expression of key proteins of mammalian target of rapamycin (mTOR) pathway. Growing follicle counts of ovaries cultured in vitro in the R0.16 and R0.32 groups were decreased and the ratio of growing to primordial follicles was also decreased in a dose‐dependent manner. In the C0.8 group, growing follicles were decreased compared with the other groups while the ratio was substantially increased in the C0.4 and C0.8 group. Co‐treatment attenuated primordial follicle loss and reduced the upregulated ratio induced by cisplatin. Ovarian follicle dynamics in vivo was consistent with the in vitro results. Primordial follicles counts were statistically increased and the ratio was reduced in the rapamycin group compared with the control group. Primordial follicle counts were dramatically reduced in the cisplatin group whereas co‐treatment with rapamycin slightly recovered its counts. There was no obvious difference in the number of growing follicles between the cisplatin group and other groups. The ratio was significantly increased in cisplatin‐treated mice whereas decreased in the co‐treatment group. The apoptosis rate of antral follicles in cisplatin‐treated mice was higher than the other groups while the apoptosis rate was decreased in the co‐treatment group in vivo. Compared with the control and rapamycin group, the mRNA expression of AMH, GDF9, and BMP15 were downregulated in the cisplatin group. The co‐treatment group recovered the mRNA expression of BMP15. In addition, the expression of key protein of mTOR pathway rpS6 and its phosphorylated forms were increased in the cisplatin‐treated group while co‐treatment decreased their expression. Rapamycin attenuated the loss of primordial follicles induced by cisplatin through the inhibitory effect of rapamycin on the mTOR pathway. These results suggest that rapamycin may be an effective drug for the protection of ovarian function during chemotherapy.  相似文献   

5.
Osteoclasts are highly differentiated terminal cells formed by fusion of hematopoietic stem cells. Previously, osteoprotegerin (OPG) inhibit osteoclast differentiation and bone resorption by blocking receptor activator of nuclear factor-κB ligand (RANKL) binding to RANK indirect mechanism. Furthermore, autophagy plays an important role during osteoclast differentiation and function. However, whether autophagy is involved in OPG-inhibited osteoclast formation and bone resorption is not known. To elucidate the role of autophagy in OPG-inhibited osteoclast differentiation and bone resorption, we used primary osteoclast derived from mice bone marrow monocytes/macrophages (BMM) by induced M-CSF and RANKL. The results showed that autophagy-related proteins expression were upregulated; tartrate-resistant acid phosphatase-positive osteoclast number and bone resorption activity were decreased; LC3 puncta and autophagosomes number were increased and activated AMPK/mTOR/p70S6K signaling pathway. In addition, chloroquine (as the autophagy/lysosome inhibitor, CQ) or rapamycin (as the autophagy/lysosome inhibitor, Rap) attenuated osteoclast differentiation and bone resorption activity by OPG treatment via AMPK/mTOR/p70S6K signaling pathway. Our data demonstrated that autophagy plays a critical role in OPG inhibiting osteoclast differentiation and bone resorption via AMPK/mTOR/p70S6K signaling pathway in vitro.  相似文献   

6.
7.
8.
9.
mTOR及其底物在HeLa细胞的细胞周期不同时相中的表达   总被引:6,自引:0,他引:6  
为探讨细胞生长的机制 ,用RT PCR、Western印迹及蛋白激酶活性测定等方法对同步化的HeLa细胞的细胞周期不同时相中mTOR(mammaliantargetofrapamycin) ,p70S6激酶 (p70S6K)的α1 、α2 、β1 、β2 不同亚型及起始因子 4E结合蛋白 1 (4EBP1 )的表达进行了检测 .RT PCR的结果表明 :在G1 、S1 、G2 、M1 、M2 几个细胞周期时相中 ,mTOR的mRNA表达无明显变化 .mTOR的底物P70S6K的亚型α1 、α2 、β1 、β2 在M期表达均有明显增加 .4EBP1的表达在M期明显减少 .免疫印迹的结果与RT PCR的一致 ,即M期p70S6K的α1 、α2 、均有增加 ,4EBP1在M期减少 .活性测定表明 ,G2 期、M期mTOR较其它期有明显增加 ,4EBP1在M期活性有所下降 .研究结果表明 :mTOR、p70S6K、4EBP1很可能在HeLa细胞的生长中起重要的调节作用  相似文献   

10.
Everolimus is an orally administered mTOR inhibitor. The effect, and mechanism of action, of everolimus on lung cancers with an epidermal growth factor receptor (EGFR) mutation remain unclear. Four gefitinib-sensitive and -resistant cell lines were used in the present work. Growth inhibition was determined using the MTT assay. Transgenic mice carrying the EGFR L858R mutation were treated with everolimus (10 mg/kg/day), or vehicle alone, from 5 to 20 weeks of age, and were then sacrificed. To evaluate the efficacy of everolimus in prolonging survival, everolimus (10 mg/kg/day) or vehicle was administered from 5 weeks of age. The four cell lines were similarly sensitive to everolimus. Expression of phosphorylated (p) mTOR and pS6 were suppressed upon treatment with everolimus in vitro, whereas the pAKT level increased. The numbers of lung tumors with a long axis exceeding 1 mm in the everolimus-treated and control groups were 1.9±0.9 and 9.4±3.2 (t-test, p<0.001), respectively. pS6 was suppressed during everolimus treatment. Although apoptosis and autophagy were not induced in everolimus-treated EGFR transgenic mice, angiogenesis was suppressed. The median survival time in the everolimus-treated group (58.0 weeks) was significantly longer than that in the control group (31.2 weeks) (logrank test, p<0.001). These findings suggest that everolimus had an indirect effect on tumor formation by inhibiting angiogenesis and might be effective to treat lung tumors induced by an activating EGFR gene mutation.  相似文献   

11.
胰岛素和佛波酯在蛋白质合成中经不同途径激活p70 S6激酶   总被引:1,自引:1,他引:0  
为研究佛波酯 (PMA)和胰岛素在蛋白质合成中的信号传递 ,应用激酶活性测定和Western印迹等方法 ,分别检测mTOR(mammaliantargetofrapamycin)特异性抑制剂rapamycin或磷脂酰肌醇 3激酶 (PI3K)的特异性抑制剂LY2 94 0 0 2预处理、PMA或胰岛素处理的血清饥饿的中国仓鼠肺成纤维细胞 (CHL)中p70S6激酶 (p70S6K)和蛋白激酶B(PKB)的活性及表达 .结果显示 ,PMA或胰岛素刺激促进p70S6K的活化和表达 .而rapamycin预处理可阻断PMA和胰岛素对p70S6K的激活作用 ,表明PMA和胰岛素可能是通过mTOR 依赖性途径激活p70S6K .结果还显示 ,胰岛素刺激促进PKB的活化和表达 ,而PMA对PKB的活性和表达无影响 .LY2 94 0 0 2预处理可阻断胰岛素对p70S6K和PKB的激活作用 ,但不能抑制PMA刺激引起的p70S6K的活化 .表明胰岛素和PMA介导p70S6K活化的信号途径有所不同 ,胰岛素介导p70S6K的活化可能依赖于PI3K途径 ,而PMA介导p70S6K的活化不通过PI3K途径  相似文献   

12.
Insulin-like growth factor (IGF-I) is hypothesized to be a critical upstream regulator of mammalian target of rapamycin (mTOR)-regulated protein synthesis with muscle contraction. We utilized a mouse model that expresses a skeletal muscle specific dominant-negative IGF-I receptor to investigate the role of IGF-I signaling of protein synthesis in response to unilateral lengthening contractions (10 sets, 6 repetitions, 100 Hz) at 0 and 3 h following the stimulus. Our results indicate that one session of high frequency muscle contractions can activate mTOR signaling independent of signaling components directly downstream of the receptor.  相似文献   

13.
Genetically engineered Sindbis viruses (SIN) are excellent oncolytic agents in preclinical models. Several human cancers have aberrant Akt signaling, and kinase inhibitors including rapamycin are currently tested in combination therapies with oncolytic viruses. Therefore, it was of interest to delineate possible cross-regulation between SIN replication and PI3K/Akt/mTOR signaling. Here, using HEK293T cells as host, we report the following key findings: (a) robust SIN replication occurs in the presence of mTOR specific inhibitors, rapamycin and torin1 or Ly294002 – a PI3K inhibitor, suggesting a lack of requirement for PI3K/Akt/mTOR signaling; (b) suppression of phosphorylation of Akt, mTOR and its effectors S6, and 4E-BP1 occurs late during SIN infection: a viral function that may be beneficial in counteracting cellular drug resistance to kinase inhibitors; (c) Ly294002 and SIN act additively to suppress PI3K/Akt/mTOR pathway with little effect on virus release; and (d) SIN replication induces host translational shut off, phosphorylation of eIF2α and apoptosis. This first report on the potent inhibition of Akt/mTOR signaling by SIN replication, bolsters further studies on the development and evaluation of engineered SIN genotypes in vitro and in vivo for unique cytolytic functions.  相似文献   

14.
In mice with temporally-induced cardiac-specific deficiency of acyl-CoA synthetase-1 (Acsl1H −/−), the heart is unable to oxidize long-chain fatty acids and relies primarily on glucose for energy. These metabolic changes result in the development of both a spontaneous cardiac hypertrophy and increased phosphorylated S6 kinase (S6K), a substrate of the mechanistic target of rapamycin, mTOR. Doppler echocardiography revealed evidence of significant diastolic dysfunction, indicated by a reduced E/A ratio and increased mean performance index, although the deceleration time and the expression of sarco/endoplasmic reticulum calcium ATPase and phospholamban showed no difference between genotypes. To determine the role of mTOR in the development of cardiac hypertrophy, we treated Acsl1H −/− mice with rapamycin. Six to eight week old Acsl1H −/− mice and their littermate controls were given i.p. tamoxifen to eliminate cardiac Acsl1, then concomitantly treated for 10 weeks with i.p. rapamycin or vehicle alone. Rapamycin completely blocked the enhanced ventricular S6K phosphorylation and cardiac hypertrophy and attenuated the expression of hypertrophy-associated fetal genes, including α-skeletal actin and B-type natriuretic peptide. mTOR activation of the related Acsl3 gene, usually associated with pathologic hypertrophy, was also attenuated in the Acsl1H −/− hearts, indicating that alternative pathways of fatty acid activation did not compensate for the loss of Acsl1. Compared to controls, Acsl1H −/− hearts exhibited an 8-fold higher uptake of 2-deoxy[1-14C]glucose and a 35% lower uptake of the fatty acid analog 2-bromo[1-14C]palmitate. These data indicate that Acsl1-deficiency causes diastolic dysfunction and that mTOR activation is linked to the development of cardiac hypertrophy in Acsl1H −/− mice.  相似文献   

15.
Starch digestion in the small intestines of the dairy cow is low, to a large extent, due to a shortage of syntheses of α-amylase. One strategy to improve the situation is to enhance the synthesis of α-amylase. The mammalian target of rapamycin (mTOR) signalling pathway, which acts as a central regulator of protein synthesis, can be activated by leucine. Our objectives were to investigate the effects of leucine on the mTOR signalling pathway and to define the associations between these signalling activities and the synthesis of pancreatic enzymes using an in vitro model of cultured Holstein dairy calf pancreatic tissue. The pancreatic tissue was incubated in culture medium containing l-leucine for 3 h, and samples were collected hourly, with the control being included but not containing l-leucine. The leucine supplementation increased α-amylase and trypsin activities and the messenger RNA expression of their coding genes (P <0.05), and it enhanced the mTOR synthesis and the phosphorylation of mTOR, ribosomal protein S6 kinase 1 and eukaryotic initiation factor 4E-binding protein 1 (P <0.05). In addition, rapamycin inhibited the mTOR signal pathway factors during leucine treatment. In sum, the leucine regulates α-amylase and trypsin synthesis in dairy calves through the regulation of the mTOR signal pathways.  相似文献   

16.
CTP synthase (CTPS), the rate-limiting enzyme in de novo CTP biosynthesis, has been demonstrated to assemble into evolutionarily conserved filamentous structures, termed cytoophidia, in Drosophila, bacteria, yeast and mammalian cells. However, the regulation and function of the cytoophidium remain elusive. Here, we provide evidence that the mechanistic target of rapamycin (mTOR) pathway controls cytoophidium assembly in mammalian and Drosophila cells. In mammalian cells, we find that inhibition of mTOR pathway attenuates cytoophidium formation. Moreover, CTPS cytoophidium assembly appears to be dependent on the mTOR complex 1 (mTORC1) mainly. In addition, knockdown of the mTORC1 downstream target S6K1 can inhibit cytoophidium formation, while overexpression of the constitutively active S6K1 reverses mTOR knockdown-induced cytoophidium disassembly. Finally, reducing mTOR protein expression results in a decrease of the length of cytoophidium in Drosophila follicle cells. Therefore, our study connects CTPS cytoophidium formation with the mTOR signaling pathway.  相似文献   

17.
目的:建立高效稳定的哺乳动物雷帕霉素靶蛋白(mTOR)小干扰RNA(siRNA)细胞导入方法,并对mTOR敲低的HepG2肝癌细胞株的功能进行初步检测。方法:构建了2条不同的人mTOR慢病毒siRNA载体pLenti-H1/mTOR siRNA,与3个包装质粒共转染293T细胞,包装成慢病毒后感染HepG2细胞;经嘌呤霉素筛选2周后,收集细胞进行Western印迹,检测mTOR敲减效果及其下游基因c-myc、周期蛋白D1(cyclinD1)表达水平及4E-BP1、S6K1磷酸化水平的变化。结果:RT-PCR和Western印迹结果显示,构建的pLenti-H1/mTOR siRNA能有效抑制mTOR基因的表达,敲低了mTOR蛋白水平,且沉默mTOR后其下游基因c-myc、CyclinD1的表达水平及4E-BP1、S6K1磷酸化水平降低。结论:构建了慢病毒介导RNA干扰mTOR表达载体,为进一步研究mTOR通路奠定了实验基础。  相似文献   

18.
Amino acids are required for the mammalian target of rapamycin (mTOR) signaling pathway and milk synthesis in bovine mammary epithelial cells (BMECs). However, the mechanism through which amino acids activate this pathway is largely unknown. Here we show that glycyl-tRNA synthetase (GlyRS) mediates amino acid-induced activation of the mTOR-S6K1/4EBP1 pathway, and milk protein and fat synthesis in BMECs. Among 19 aminoacyl-tRNA synthetases, only the mRNA expression of GlyRS and Leucyl-tRNA synthetase (LeuRS) were significantly increased by several amino acids including Met and Leu. We then observed that GlyRS knockdown abolished the stimulation of Met on milk protein and fat synthesis in BMECs, whereas GlyRS overexpression led to more significantly increased milk synthesis in cells treated with Met. By western blotting and qualitative real time-polymerase chain reaction analysis (qRT-PCR) analysis, we next revealed that GlyRS is required for amino acid-induced activation of the mTOR-S6K1/4EBP1 pathway. Thus, this study establishes that GlyRS mediates amino acid-induced activation of the mTOR pathway, thereby regulating milk protein and fat synthesis.  相似文献   

19.
Amino acids regulate cellular functions in a variety of cell types. Most notably, leucine stimulates protein production through the mammalian target of rapamycin (mTOR)-dependent signaling pathway. We investigated the effect of amino acids on hepatocyte growth factor (HGF) production. Treatment with glutamine and proline, as well as leucine, increased HGF levels in the culture medium of a rat hepatic stellate cell clone in a dose-dependent manner. Up-regulation of phosphorylation of 70 kDa ribosomal protein S6 kinase and eukaryotic initiation factor 4E-binding protein 1 was not apparent in the cells after treatment with glutamine or proline. When rats received injections of glutamine or proline, hepatic and circulating HGF levels increased and peaked around 12 h after treatment. Glutamine and proline may have the potential to stimulate HGF production but the mechanism underlying this stimulation seems not to be through the mTOR-dependent signaling pathway.  相似文献   

20.
Tee AR  Blenis J  Proud CG 《FEBS letters》2005,579(21):4763-4768
The small G protein Rheb (Ras homologue enriched in brain) is known to promote mammalian target of rapamycin (mTOR) signaling. In this study, we show that Rheb like-1 protein (RhebL1) rescues mTOR signaling during nutrient withdrawal and that tuberous sclerosis complex-1 (TSC) and TSC2 impairs RhebL1-mediated signaling through mTOR. We identify critical residues within the switch I region (N41) and 'constitutive' effector (Ec) region (Y/F54 and L56) of Rheb and RhebL1, which are required for their efficient activation of mTOR signaling. Mutation of Rheb and RhebL1 at N41 impaired their interaction with mTOR, which identifies mTOR as a common downstream target of both Rheb and RhebL1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号