首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aortic coarctation is a life-threatening defect when it occurs with cardiorespiratory failure. Its genetic cause remains unknown. A woman was pregnant twice, both with male fetuses that had partial trisomy 18p, partial monosomy 18q, and aortic coarctation. The syndrome may relate to the aortic coarctation and pulmonary hypoplasia and is life-threatening. ArrayCGH analysis suggested a de novo 17.7 Mb deletion of chromosome 18q21.33 → qter (58,413,193 bp to 76,116,029 bp) and a de novo 12.4 Mb duplication of chromosome 18pter → p11.21 (1543 bp to 12,438,430 bp) at the telomeric end of chromosome 18. To the best of our knowledge, the present chromosomal breakpoint with rearrangement has not been previously described. This chromosome aberration may be responsible for this syndrome.  相似文献   

2.
Isolated partial duplication of the long arm of chromosome 11 is very rare. The main features are dysmorphic facial features, pre/postnatal growth retardation, speech delay, mental retardation, hypotonia, microcephaly, and cardiac, vertebral, limb and genital anomalies. In this case, we report a patient with partial trisomy of 11q13.5 → qter due to a de novo rearrangement consisting of the whole X chromosome and part of chromosome 11; 46,X,der(X)(Xqter → Xp22.33::11q13.5 → 11qter). Additional findings were a separated clavicle, lacrimal duct stenosis and prenatally detected renal hypoplasia. SNP array results revealed a duplication between 11q13.5 and 11qter, measuring 58 Mb, from nucleotide 76,601,607 to 134,926,021. As a result, molecular karyotyping could be performed in such cases in order to establish a definite phenotype–genotype correlation using conventional or molecular cytogenetics techniques.  相似文献   

3.
We present rapid aneuploidy diagnosis of partial trisomy 3q (3q27.3→qter) and partial monosomy 14q (14q31.3→qter) of paternal origin by aCGH using uncultured amniocytes in a fetus with hypotonia, scoliosis, arthrogryposis, hyperextensible joints, facial dysmorphism, ventricular septal defect, pulmonary stenosis, clenched hands, clubfoot, scalp edema and right hydronephrosis. We discuss the genotype–phenotype correlation of 3q duplication syndrome and terminal 14q deletion syndrome. We demonstrate that fetuses with a paternal-origin deletion of 14q involving the 14q32.2 imprinted region may prenatally present the upd(14)mat-like phenotype such as hypotonia, scoliosis, arthrogryposis and hyperextensible joints.  相似文献   

4.

Background

The etiology of premature ovarian failure (POF) still remains undefined. Although the majority of clinical cases are idiopathic, there are possibilities of the underestimation of the most common etiologies, probably genetic causes. By reporting a case of POF with a partial Xp duplication and Xq deletion in spite of a cytogenetically 46,XX normal karyotype, we look forward that the genetic cause of POF will be investigated more methodically.

Methods

We performed a basic and clinical study at a university hospital-affiliated fertility center. The study population was a POF patient and her family. Cytogenetic analysis, FMR1 gene analysis, multiplex ligation-dependent probe amplification (MLPA), fluorescent in situ hybridization (FISH), and oligonucleotide-array based comparative genomic hybridization (array CGH) were performed.

Results

In spite of normal cytogenetic analysis in the proband and her mother and younger sister, FMR1 gene was not detected in the proband and her younger sister. In Southern blot analysis, the mother showed a normal female band pattern, but the proband and her younger sister showed no 5.2 kb methylated band. The abnormal X chromosome of the proband and her sister was generated from the recombination of an inverted X chromosome of the mother during maternal meiosis, and the karyotype of the proband was 46,XX,rec(X)dup(Xp)inv(X)(p22.1q27.3).

Conclusion

Array CGH followed by FISH allowed precise characterization of the der(X) chromosome and the initial karyotype of the proband had been changed to 46,XX,rec(X)dup(Xp)inv(X)(p22.3q27.3)mat.arr Xp22.33p22.31(216519–8923527)x3,Xq27.3q28(144986425–154881514)x1. This study suggests that further genetic investigation may be needed in the cases of POF with a cytogenetically 46,XX normal karyotype to find out the cause and solution for these disease entities.  相似文献   

5.
Chromosomal rearrangements are common in humans. Pericentric inversions are among the most frequent aberrations (1–2%). Most inversions are balanced and do not cause problems in carriers unless one of the breakpoints disrupts important functional genes, has near submicroscopic copy number variants or hosts “cryptic” complex chromosomal rearrangements. Pericentric inversions can lead to imbalance in offspring. Less than 3% of Down syndrome patients have duplication as a result of parental pericentric inversion of chromosome 21. We report a family with an apparently balanced pericentric inversion of chromosome 21. The proband, a 23-year-old female was referred for prenatal diagnosis at 16 weeks gestation because of increased nuchal translucency. She has a familial history of Down's syndrome and moderate intellectual disability, a personal history of four spontaneous abortions and learning difficulties. Peripheral blood and amniotic fluid samples were collected to perform proband's and fetus' cytogenetic analyses. Additionally, another six family members were evaluated and cytogenetic analysis was performed. Complementary FISH and MLPA studies were carried out. An apparent balanced chromosome 21 pericentric inversion was observed in four family members, two revealed a recombinant chromosome 21 with partial trisomy, and one a full trisomy 21 with an inverted chromosome 21. Array CGH analysis was performed in the mother and the brother's proband. MLPA and aCGH studies identified a deletion of about 1.7 Mb on the long arm of inverted chromosome 21q22.11. We believe the cause of the intellectual disability/learning difficulties observed in the members with the inversion is related to this deletion. The recombinant chromosome 21 has a partial trisomy including the DSCR with no deletion. The risk for carriers of having a child with multiple malformations/intellectual disability is about 30% depending on whether and how this rearrangement interferes with meiosis.  相似文献   

6.
Supernumerary marker chromosomes (SMC) are heterogeneous group of chromosomes which are reported in variable phenotypes. Approximately 70% originate from acrocentric chromosomes. Here we report a couple with recurrent miscarriages and a SMC originating from an acrocentric chromosome. The cytogenetic analysis of the husband revealed a karyotype of 47,XY+marker whereas the wife had a normal karyotype. Analysis of SMC with C-banding showed the presence of a big centromere in the center and silver staining showed prominent satellites on both sides of the marker. Apparently, microarray analysis revealed a 2.1 Mb duplication of 15q11.2 region but molecular cytogenetic analysis by fluorescence in situ hybridization (FISH) with whole chromosome paint (WCP) 15 showed that the SMC is not of chromosome 15 origin. Subsequently, FISH with centromere 22 identified the SMC to originate from chromosome 22 which was also confirmed by WCP 22. Additional dual FISH with centromere 22 and Acro-p-arm probes confirmed the centromere 22 and satellites on the SMC. Further fine mapping of the marker with Bacterial Artificial Chromosome (BAC) clones; two on chromosome 22 and four on chromosome 15 determined the marker to possess only centromere 22 sequences and that the duplication 15 exists directly on chromosome 15. In our study, we had identified and characterized a SMC showing inversion duplication 22(p11.1) combined with a direct tandem duplication of 15q11.2. The possible genotype–phenotype in relation with the two rearrangements is discussed.  相似文献   

7.
Inverted duplications associated with terminal deletions are complex anomalies described in an increasing of chromosome ends. We report on the cytogenetic characterization of the first de novo inv dup del(4) with partial 4p duplication and 4q deletion in a girl with clinical signs consistent with “recombinant 4 syndrome”. This abnormality was suspected by banding, but high-resolution molecular cytogenetic investigations allowed us to define the breakpoints of the rearrangement. The terminal duplicated region extending from 4p15.1 to the telomere was estimated to be 29.27 Mb, while the size of the terminal deletion was 3.114 Mb in the 4q35.1 region. Until now, 10 patients with duplicated 4p14-p15 and deleted 4q35 chromosome 4 have been described. In all cases the abnormal chromosome 4 was derived from a pericentric inversion inherited from one of the parents. In conclusion, we have identified the first case of inv dup del(4) with normal parents suggesting that, often, terminal duplications or terminal deletions mask complex rearrangements.  相似文献   

8.
Antunes H  Gonçalves JP  Silva E  Teles N 《Gene》2012,503(1):152-154
The phenotype and severity of symptoms associated with deletions on chromosome 7 are directly proportional to the size of the deleted segment. Distal and interstitial deletions have been described in 40 cases. In this report the authors aim to report a child with a novel de novo interstitial deletion on chromosome 7, with the following karyotype: 46,XX,del(7)(p14.2 p15.1). We described a female, born at 38 weeks with intrauterine growth restriction and feeding problems with episodes of cyanosis after feedings and failure to thrive. Physical examination showed low implantation of ears, hypertelorism, oblique palpebral fissures, retrognathia, and palate ogived, with insertion anomalies of the toes, poor facial expression and mild axial hypotonia. Transfontanelar ultrasound, magnetic resonance imaging, bronchofibroscopy and metabolic studies were normal. She was hospitalized until the 32nd day of life. She started speech therapy and presented improvements in swallowing. The percutaneous endoscopic gastrostomy was removed at 36 months. She had recurrent urinary tract infection with normal dimercaptosuccinic acid but with a vesicoureteral reflux (grade III). Imagiological studies revealed a bilateral osteonecrosis of femoral epiphysis (Legg-Calvé-Perthes disease). Currently (6years-old), she is being normally fed (body mass index=15.8kg/m(2)). Her weight is 16.4kg (3rd centile) and length is 105cm (3rd to 5th centiles). She has a mild delay of psychomotor development impairment and some speech problems. This is the first case report of a patient with this de novo small interstitial deletion on chromosome 7. This rare chromosomal abnormality was associated with severe feeding problems in the first years of life.  相似文献   

9.
Fraser syndrome (FS) is a rare autosomal recessive inherited disorder characterized by cryptophthalmos, laryngeal defects and oral clefting, mental retardation, syndactyly, and urogenital defects. To date, 250 patients have been described in the literature. Mutations in the FRAS1 gene on chromosome 4 have been identified in patients with Fraser syndrome. So far, 26 mutations have been identified, most of them are truncating mutations. The mutational spectrum includes nucleotide substitutions, splicing defects, a large insertion, and small deletions/insertions. Moreover, single heterozygous missense mutations in FRAS1 seem to be responsible for non-syndromic unilateral renal agenesis.  相似文献   

10.
Microduplications of 22q11.2 have been recently characterized as a new genomic duplication syndrome showing an extremely variable phenotype ranging from normal or mild learning disability to multiple congenital defects and sharing some overlapping features with DiGeorge/Velocardiofacial syndrome (DGS/VCFS). We report on the prenatal diagnosis of a 22q11.2 microduplication in a fetus with normal development that was referred for chromosomal analysis at 17 weeks of gestation because of advanced maternal age. Pregnancy was the result of an IVF-ICSI attempt after 4 years of infertility, mainly due to severe oligoasthenoteratospermia of the father. Amniocentesis was undertaken and cytogenetic analysis revealed an apparently normal male karyotype. Multiple Ligation-dependent Probe Amplification (MLPA) revealed a microduplication in the 22q11.2 chromosome region. Parental analysis showed that the 22q11.2 microduplication has been inherited from the otherwise healthy mother. Analysis with high resolution array-CGH showed that the size of the microduplication is 2.5 Mb and revealed the genes that are duplicated, including the TBX1 gene. The parents elected to continue with the pregnancy and the infant is now five months old and shows normal development.  相似文献   

11.
Ambiguous genitalia or disorder of the sexual development is a birth defect where the external genitals do not have the typical appearance of either a male or female. Here we report a boy with ambiguous genitalia and short stature. The cytogenetic analysis by G-banding revealed a small Y chromosome and an additional material on the 15p arm. Further, molecular cytogenetic analysis by Fluorescence in situ hybridization (FISH) using whole chromosome paint probes showed the presence of Y sequences on the 15p arm, confirming that it is a Y;15 translocation. Subsequent, FISH with centromere probe Y showed two signals depicting the presence of two centromeres and differing with a balanced translocation. The dicentric nature of the derivative 15 chromosome was confirmed by FISH with both 15 and Y centromeric probes. Further, the delineation of the Y chromosomal DNA was also done by quantitative real time PCR. Additional Y-short tandem repeat typing was performed to find out the extent of deletion on small Y chromosome. Fine mapping was carried out with 8 Y specific BAC clones which helped in defining the breakpoint regions. MLPA was performed to check the presence or absence of subtelomeric regions and SHOX regions on Y. Finally array CGH helped us in confirming the breakpoint regions. In our study we identified and characterized a novel complex Y chromosomal rearrangement with a complete deletion of the Yq region and duplication of the Yp region with one copy being translocated onto the15p arm. This is the first report of novel and unique Y complex rearrangement showing a deletion, duplication and a translocation in the same patient. The possible mechanism of the rearrangement and the phenotype–genotype correlation are discussed.  相似文献   

12.
We present rapid aneuploidy diagnosis of de novo partial trisomy 12q (12q24.21 → qter) and partial monosomy 6q (6q27 → qter) by aCGH using uncultured amniocytes in a fetus with coarctation of the aorta, ventriculomegaly and thickened nuchal fold. We discuss the association of TBX3, TBX5 and MED13L gene duplication with coarctation of the aorta, and the association of RNASET2 gene haploinsufficiency with ventriculomegaly in this case.  相似文献   

13.
We present prenatal diagnosis of de novo 22q11.2 microdeletion syndrome using uncultured amniocytes in a pregnancy with conotruncal heart malformations in the fetus. We discuss the genotype–phenotype correlation and the consequence of haploinsufficiency of TBX1, COMT, UFD1L, GNB1L and MED15 in the deleted region. We review the literature of chromosomal loci and genes responsible for conotruncal heart malformations and tetralogy of Fallot.  相似文献   

14.

Background

Microduplication at 17p13.3 and microdeletion at 21q22 are both rare chromosomal aberrations. The presence of both genomic imbalances in one patient has not been previously reported in literature. In this study, we performed a molecular diagnostic testing with a whole genome microarray on a 3-year-old boy with developmental delay, mental retardation and multiple malformations.

Methods

A routine G-banding karyotype analysis was performed using peripheral lymphocytes. Chromosome microarray analysis (CMA) was done using Affymetrix CytoScan™ HD array. Genomic imbalances were further confirmed by multiple ligation-dependent probe amplification (MLPA).

Results

The result of karyotyping was normal but CMA detected a 9.8 Mb microduplication at 17p13.3–13.1 (chr17: 1–9,875,545) and a 2.8 Mb microdeletion involving 21q22.3–qter (chr21: 45,239,077–48,097,372). The imbalances were due to a balanced translocation present in patient's mother. The patient was characterized with short stature, profound developmental delay, non-verbal, intellectual disability as well as craniofacial dysmorphism, subtle brain structural anomaly and sparse scalp hair.

Conclusions

This is the first patient reported with a combination of a microduplication at 17p13.3–13.1 and a microdeletion at 21q22.3–qter. Both genomic imbalances were undetected by conventional karyotyping but were delineated with CMA test. Synergistic effect from the two rare genomic imbalances is likely responsible for the severe clinical phenotypes observed in this patient.  相似文献   

15.
Chromosome 7q36 microdeletion syndrome is a rare genomic disorder characterized by underdevelopment of the brain, microcephaly, anomalies of the sex organs, and language problems. Developmental delay, intellectual disability, autistic spectrum disorders, BDMR syndrome, and unusual facial morphology are the key features of the chromosome 2q37 microdeletion syndrome. A genetic screening for two brothers with global developmental delay using high-resolution chromosomal analysis and subtelomeric multiplex ligation-dependent probe amplification revealed subtelomeric rearrangements on the same sites of 2q37.2 and 7q35, with reversed deletion and duplication. Both of them showed dysmorphic facial features, severe disability of physical and intellectual development, and abnormal genitalia with differential abnormalities in their phenotypes. The family did not have abnormal genetic phenotypes. According to the genetic analysis of their parents, adjacent-1 segregation from their mother's was suggested as a mechanism of their gene mutation. By comparing the phenotypes of our patients with previous reports on similar patients, we tried to obtain the information of related genes and their chromosomal locations.  相似文献   

16.
We present prenatal diagnosis of mosaicism for a small supernumerary marker chromosome (sSMC) derived from chromosome 22 associated with cat eye syndrome (CES) using cultured amniocytes in a pregnancy with fetal microcephaly, intrauterine growth restriction, left renal hypoplasia, total anomalous pulmonary venous return with dominant right heart and right ear deformity. The sSMC was bisatellited and dicentric, and was characterized by multiplex ligation-dependent probe amplification (MLPA) and array comparative genomic hybridization (aCGH). The SALSA MLPA P250-B1 DiGeorge Probemix showed duplication of gene dosage in the CES region. aCGH showed a 1.26-Mb duplication at 22q11.1–q11.21 encompassing CECR1CECR7. The sSMC was likely inv dup(22) (q11.21). Prenatal diagnosis of an sSMC(22) at amniocentesis should alert CES. MLPA, aCGH and fetal ultrasound are useful for rapid diagnosis of CES in case of prenatally detected sSMC(22).  相似文献   

17.
Pericentric inversions of chromosome 9 leading to unbalanced live-born offspring are relatively rare and so far only four cases have been reported. Here we present two sisters with an unbalanced recombinant chromosome 9 which resulted from a large maternal pericentric inversion inv(9)(p24.3q34.1). Further molecular characterisation of the aberrant chromosome 9 by 250k SNP array analysis showed a terminal 460 kb loss of 9p24.3 and a terminal 8.9 Mb gain of 9q34.11. We compared the clinical features of these two patients with the previous reported four cases as well as with patients with similar sized 9pter deletions or 9qter duplications. Based upon this study, we suggest that the recombinant chromosome 9 phenotype is mainly the result of duplication of a 3.4 Mb region of chromosome 9q34.11q34.13.  相似文献   

18.

Background

Hereditary multiple exostosis represents the most frequent bone tumor disease in humans. It consists of cartilage deformities affecting the juxta-ephyseal region of long bones. Usually benign, exostosis could degenerate in malignant chondrosarcoma form in less than 5% of the cases. Being caused by mutations in the predicted tumor suppressor genes, EXT1 (chr 8q23-q24) and EXT2 (chr 11p11-p12) genes, HMEs are usually inherited with an autosomal dominant pattern, although “de novo” cases are not infrequent.

Aim

Here we present our genetic diagnostic report on the largest Southern Italy cohort of HME patients consisting of 90 subjects recruited over the last 5 years.

Results

Molecular screening performed by direct sequencing of both EXT1 and EXT2 genes, by MLPA and Array CGH analyses led to the identification of 66 mutations (56 different occurrences) and one large EXT2 deletion out of 90 patients (74.4%). The total of 21 mutations (20 different occurrences, 33.3%) and the EXT2 gene deletion were novel. In agreement with literature data, EXT1 gene mutations were scattered along all the protein sequence, while EXT2 lesions fell in the first part of the protein. Conservation, damaging prediction and 3-D modeling, in-silico, analyses, performed on three novel missense variants, confirmed that at least in two cases the novel aminoacidic changes could alter the structure stability causing a strong protein misfolding.

Conclusions

Here we present 20 novel EXT1/EXT2 mutations and one large EXT2 deletion identified in the largest Southern Italy cohort of patients affected by hereditary multiple exostosis.  相似文献   

19.
The Peutz-Jeghers syndrome (PJS) is an autosomal-dominant hamartomatous polyposis syndrome characterized by mucocutaneous pigmentation, gastrointestinal polyps and the increased risk of multiple cancers. The causative point mutation in the STK11 gene of most patients accounts for about 30% of the cases of partial and complete gene deletion. This is a report on a girl with PJS features, learning difficulties, dysmorphic features and cardiac malformation, bearing a de novo 1.1 Mb deletion at 19p13.3. This deletion encompasses at least 47 genes, including STK11. This is the first report on 19p13.3 deletion associated with a PJS phenotype, as well as other atypical manifestations, thereby implying a new contiguous gene syndrome.  相似文献   

20.
13q deletion syndrome is a rare genetic disorder, especially for group 3 deletion (13q33–q34 deletion). Previously we described a patient with congenital heart defect and mental retardation and proposed that a distal 6 Mb region might contain the causative gene of congenital heart defect. Here we present a new patient with congenital heart defects (CHD), hand and foot anomalies and mild mental retardation. We identified a 1.1 Mb deletion at chromosome 13q34 with high resolution SNP-array BeadChips (HumanOmni1-Quad, Illumina, USA). This chromosome region contains ten annotated genes, including GRK1, TFDP1, RASA3 and GAS6. To our knowledge, this represents the smallest 13q34 deletion identified to date. Our study provides additional support that distal 13q34 deletion region might contain key gene(s) responsible for cardiac development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号