首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.

Objective

Methylene-tetrahydrofolate reductase (MTHFR) is a key enzyme regulating folate metabolism and it is thought to influence DNA methylation and nucleic acid synthesis. Mutations in the MTHFR gene have been associated with several autoimmune disorders in previous studies. Alopecia areata (AA) is considered to be a tissue-specific autoimmune disease as the hair follicle has been targeted and antibodies to their own hair follicle structures have been developed. Since there is a common shared pathway between AA and other autoimmune disorders, we aimed to investigate a possible association between the MTHFR gene C677T mutation and AA susceptibility in the Turkish population.

Methods

The study included 136 patients affected by AA and 130 healthy controls. Genomic DNA was isolated and genotyped using a polymerase chain reaction (PCR)-based restriction fragment length polymorphism (RFLP) assay for the MTHFR gene C677T mutation.

Results

The distributions of genotype and allele frequencies of MTHFR gene C677T mutation were statistically different between AA patients and the control group (p = 0.036 and p = 0.011, respectively). High differences were also observed when the patients and controls were compared according to CC versus CT + TT (p = 0.012). CT + TT genotypes and T allele of MTHFR gene C677T mutation were found to be a susceptibility factor for AA in the Turkish population.

Conclusion

The results suggest that MTHFR gene C677T mutation may have an effect on the risk of alopecia areata in the Turkish population. This is the first study reporting the association between the MTHFR (C677T) genotype and AA.  相似文献   

2.

Background

Behcet's disease (BD) is a chronic, relapsing, multi-systemic inflammatory disorder of unknown causes. This disease is mainly characterized by mucocutaneous, ocular, vascular, and central nervous system manifestations. The aim of this study is to investigate the associations between C677T and A1298C polymorphisms in the methylenetetrahydrofolate reductase (MTHFR) gene and the plasma homocysteine (Hcy), folate, and B12 levels in a relatively large cohort of Tunisian patients with BD.

Methods

The study included 142 patients with BD and 172 healthy controls. The C677T and A1298C polymorphisms were genotyped using PCR-RFLP. Serum Hcy level was determined using a fluorescence polarization immunoassay. Serum folate and vitamin B12 levels were measured by electrochemiluminescence immunoassay.

Results

Genotype and allele frequencies of the two studied MTHFR polymorphisms did not show any significant differences among BD patients compared to controls. Patient carriers of the 677TT variant and the 677 T allele displayed significantly higher Hcy concentration. Moreover, no significant association was found between neither A1298C polymorphism nor the C allele and Hcy, folate, and B12 levels. In multivariate analyses, we reported that 677 T allele, male gender, and creatinine level were independent risk factors for hyperhomocysteinemia (HHC).

Conclusions

In the present study, we report the absence of any significant differences between genotype and allele frequencies for both studied polymorphisms among BD patients compared to healthy controls. Besides, we showed that the T allele of MTHFR C677T polymorphism influenced the Hcy level which is an independent risk factor for HHC in Tunisian BD patients.  相似文献   

3.
DNA methylation is mediated by DNA methyltransferases (DNMTs) that add a methyl group to the 5′-carbon of cytosine. The enzyme methylenetetrahydrofolate reductase (MTHFR) catalyzes the reduction of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate in the rate-limiting step of the cycle involving the methyl donor S-adenosyl-L-methionine (SAM). The MTHFR C677T polymorphism results in a thermolabile enzyme with reduced activity that is predicted to influence the DNA methylation status. In this study, we investigated the impact of the MTHFR C677T polymorphism on the global DNA methylation of oral epithelial cells obtained from 54 healthy subjects. There were no significant differences in global DNA methylation among the MTHFR CC, CT and TT genotypes (p = 0.75; Kruskal-Wallis test).  相似文献   

4.

Introduction

Cervical cancer is one of the most common cancers diagnosed in women worldwide. Mammalian cells are constantly exposed to a wide variety of genotoxic agents from both endogenous and exogenous sources. The RAD51 protein is required for meiotic and mitotic recombination and plays a central role in homology-dependent recombinational repair of double-strand breaks (DSBs). Given the functional relevance of the DNA repair system on carcinogenesis, potential associations between genetic polymorphisms of DNA repair genes, cancer risk and response to therapy have been intensively evaluated. This is the first study evaluating the role of the RAD51 G172T genetic variants in cancer prognosis and clinical outcome of cervical cancer patients.

Material and methods

We analyzed RAD51 G172T polymorphism genotypes in cervical cancer patients who underwent a platinum-based chemotherapy in combination with radiotherapy. Genotyping was performed by Taqman™ Allelic Discrimination methodology.

Results and discussion

Concerning the overall survival rates found using Kaplan–Meier method and Log Rank Test, we observed that the mean survival rates were statistically different according to the patients RAD51 genotypes. The group of patients carrying the T allele present a higher mean survival rate than the other patients (102.3 months vs. 86.4 months, P = 0.020). Using the Cox regression analysis, we found an increased overall survival time for T-carrier patients, when compared with GG genotype, with tumor stage, age and presence of lymph nodes as covariates [hazard ratio (HR), 0.373; 95% CI, 0.181–0.770; P = 0.008]. Among patients (n = 193), RAD51 genotype frequency distributions were not under the influence of clinicopathologic characteristics, namely, treatment response (P = 0.508), recurrence (P = 0.150) and tumor stage (P = 0.250).

Conclusions

This is the first study evaluating the role of the RAD51 G172T genetic variants in cancer prognosis and clinical outcome of cervical cancer patients. Our results indicate an influence of the RAD51 genetic variants in overall survival of cervical cancer. Thereby, RAD51 G172T genotypes may provide additional prognostic information in cervical cancer patients who underwent cisplatin-based chemotherapy in combination with radiotherapy.  相似文献   

5.
We aimed to investigate single nucleotide polymorphisms (SNPs) in the EWS gene breaking region in order to analyze Ewing's sarcoma susceptibility. The SNPs were investigated in a healthy subject population and in Ewing's sarcoma patients from Southern Brazil. Genotyping was performed by TaqMan® assay for allelic discrimination using Real-Time PCR. The analysis of incidence of SNPs or different SNP-arrangements revealed a higher presence of homozygote TT-rs4820804 in Ewing's sarcoma patients (p = 0.02; Chi Square Test). About 300 bp from the rs4820804 SNP lies a palindromic hexamer (5′-GCTAGC-3′) and three nucleotides (GTC), which were previously identified to be in close vicinity of the breakpoint junction in both EWS and FLI1 genes. This DNA segment surrounding the rs4820804 SNP is likely to indicate a breakpoint region. If the T-rs4820804 allele predisposes a DNA fragment to breakage, homozygotes (TT-rs4820804) would have double the chance of having a chromosome break, increasing the chances for a translocation to occur. In conclusion, the TT-rs4820804 EWS genotype can be associated with Ewing's sarcoma and the SNP rs4820804 can be a candidate marker to understand Ewing's sarcoma susceptibility.  相似文献   

6.

Aim

To analyze the effect of the two different versions of the manganese superoxide dismutase gene (SOD2) on sepsis. The SOD2 gene presents the 47C > T single nucleotide polymorphism (SNP; ID: rs4880) which produces MnSOD with different activities. The − 9Val MnSOD (47T allele) is less efficient than the − 9Ala version (47C allele). During sepsis there are abundance of ROS, high SOD2 expression and excess of H2O2 synthesis. High concentrations of H2O2 could affect the sepsis scenario and/or the sepsis outcome.

Methods

We determined the 47C > T single nucleotide polymorphism (SNP) frequencies in 529 critically ill patients with or without sepsis, facing outcome. To collect information on population frequencies, we obtained a pilot 47C > T genotypic and allelic frequencies in a random group of 139 healthy subjects.

Results

We compared the 47C allele carriers (47CC + 47CT genotypes) with 47TT homozygotes and noticed a significant association between 47C allele carriers and septic shock in septic patients (P = 0.025). With an adjusted binary multivariate logistic regression, incorporating 47C > T SNP and the main clinical predictors, we showed high SOFA scores [P < 0.001, OR = 9.107 (95% CI = 5.319–15.592)] and 47C allele [P = 0.011, OR = 2.125 (95% CI = 1.190–3.794)] were significantly associated with septic shock outcome. With this information we presented a hypothesis suggesting that this negative outcome from sepsis is possibly explained by effects on cellular stress caused by 47C allele.

Conclusion

In our population there was a significant higher frequency of septic shock in septic patients with the 47C allele of the SOD2 gene. This higher 47C allele frequency in septic patients with negative outcome could be explained by effects of higher activity MnSOD on cellular stress during the sepsis.  相似文献   

7.
The tumor suppressor TP53 gene is one of the most frequently mutated in different types of human cancer. Particularly in colorectal cancer (CRC), it is believed that TP53 mutations play a role in the adenoma–carcinoma transition of tumors during pathological process. In order to analyze TP53 expressed alleles in CRC, we examined TP53 mRNA in tumor samples from 101 patients with sporadic CRC. Samples were divided in two groups defined according to whether they exhibit positive or negative P53 protein expression as detected by immunohistochemistry (IHC). The presence of TP53 mutation was a common event in tumors with an overall frequency of 54.5%. By direct sequencing, we report 42 different TP53 sequence changes in 55 CRC patients, being two of them validated polymorphisms. TP53 mutations were more frequent in positive than in negative P53 detection group (p < 0.0001), being the precise figures 79.6% and 30.8%, respectively. In addition, the mutation profiles were also different between the two groups of samples; while most of the mutations detected in P53 positive group were missense (38 out of 39), changes in P53 negative detection group include 7 insertions/deletions, 6 missense, 2 nonsense and 1 silent mutation. As previously observed, most mutations were concentrated in regions encoding P53 DNA binding domain (DBD). Codons 175, 248 and 273 together account for 36.7% of point mutations, in agreement with previous observations provided that these codons are considered mutation hotspots. Interestingly, we detected two new deletions and two new insertions. In addition, in three samples we detected two deletions and one insertion that could be explained as putative splicing variants or splicing errors.  相似文献   

8.
Turner syndrome is a condition caused by numeric and structural abnormalities of the X chromosome, and is characterized by a series of clinical features, the most common being short stature and gonadal dysgenesis. An increased frequency of autoimmune diseases as well as an elevated incidence of autoantibodies has been observed in Turner patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号