首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
Hereditary hypotrichosis is a heterogeneous group of inherited hair loss disorders characterized by diffused or localized thinning or absence of hair affecting scalp, eyebrows and eyelashes, and other body parts. Over the past few years, at least four autosomal dominant and six autosomal recessive forms of hypotrichosis have been described. All these ten forms of hypotrichosis have been mapped on different human chromosomes and the corresponding genes have been identified in most of these cases. In the present study, we have described a six-generation Pakistani consanguineous family with an autosomal recessive transmission of hereditary hypotrichosis. All the five affected individuals of the family showed complete absence of scalp hair and sparse eyebrows and eyelashes. They were born with complete absence of scalp hairs. Facial hair of beard and mustaches were present in all the affected adult male individuals. Papules were observed only on scalp of the affected individuals. A scalp biopsy from an affected individual showed markedly reduced number of hair follicles. Human genome scan using polymorphic microsatellite markers mapped the disease locus on chromosome 7p21.3–p22.3, flanked by markers D7S1532 and D7S3047. A maximum two-point LOD score of 4.74 (θ = 0.00) was obtained at marker D7S481. The linkage interval spans 15.69 cM, which corresponds to 6.59 Mb according to the sequence-based physical map (Build 36.2). Mutation analysis of five potential candidate genes (GNA12, FOXK1, DAGLB, ZNF12, ACTB), located in the linkage interval, did not reveal any functional sequence variant.  相似文献   

3.
p53 in the cytoplasm: a question of overkill?   总被引:5,自引:0,他引:5  
Baptiste N  Prives C 《Cell》2004,116(4):487-489
  相似文献   

4.
Summary A 3-year-old girl with duplication 9 (p22p13) is reported. The presence of a classical 9p trisomy phenotype in this patient suggests that this region (or part of it) is responsible for the major, typical clinical stigmata of this partial autosomal trisomy syndrome.  相似文献   

5.
Growing evidence suggests the Δ133p53α isoform may function as an oncogene. It is overexpressed in many tumors, stimulates pathways involved in tumor progression, and inhibits some activities of wild-type p53, including transactivation and apoptosis. We hypothesized that Δ133p53α would have an even more profound effect on p53 variants with weaker tumor-suppressor capability. We tested this using a mouse model heterozygous for a Δ133p53α-like isoform (Δ122p53) and a p53 mutant with weak tumor-suppressor function (mΔpro). The Δ122p53/mΔpro mice showed a unique survival curve with a wide range of survival times (92–495 days) which was much greater than mΔpro/- mice (range 120–250 days) and mice heterozygous for the Δ122p53 and p53 null alleles (Δ122p53/-, range 78–150 days), suggesting Δ122p53 increased the tumor-suppressor activity of mΔpro. Moreover, some of the mice that survived longest only developed benign tumors. In vitro analyses to investigate why some Δ122p53/mΔpro mice were protected from aggressive tumors revealed that Δ122p53 stabilized mΔpro and prolonged the response to DNA damage. Similar effects of Δ122p53 and Δ133p53α were observed on wild-type of full-length p53, but these did not result in improved biological responses. The data suggest that Δ122p53 (and Δ133p53α) could offer some protection against tumors by enhancing the p53 response to stress.The p53 tumor suppressor is most important for preventing cancers. p53 controls cell fate in response to stress by inducing apoptosis, cell cycle arrest/senescence, DNA repair (reviewed in Braithwaite et al.,1, 2 Oren,3 and Speidel4) or possibly restricting supply of basic substrates for metabolism.5, 6, 7 The regulation of p53 function has recently become more complex with the discovery of 13 isoforms, which may interfere with the normal functioning of full-length (FL) p53.8, 9, 10, 11, 12, 13, 14 An alternative promoter in intron 4 generates the Δ133p53 isoforms (Δ133p53α, and with additional alternative splicing in intron 9, Δ133p53β, and Δ133p53γ11).The Δ133p53α isoform is expressed in many tissues, but elevated levels have been found in several cancers.11, 15, 16 Although the function(s) of Δ133p53α are not fully understood, growing evidence suggests it may have tumor-promoting capacities. Reducing Δ133p53α levels in the U87MG glioblastoma cell line reduced its ability to migrate and stimulate angiogenesis.17 Δ133p53α may also interfere with the tumor-suppressor functions of FLp53. The zebrafish ortholog of Δ133p53α, Δ113p53, inhibited p53-mediated apoptosis,18 and overexpression of Δ133p53α inhibited p53-directed G1 cell cycle arrest.16Previously, we reported the construction and characterization of a mouse expressing an N-terminal truncation mutant of p53 (designated Δ122p53) that is very similar to Δ133p53α, providing the first mouse model of the Δ133p53α isoform.19, 20 Δ122p53 was found to increase cell proliferation and in p53 null cells transduced with a Δ122p53 expressing retrovirus, inhibited the transactivation of CDKN1a (encoding) p21CIP1 and MDM2 by FLp53.19, 20 As well as elevating cell proliferation, homozygote Δ122p53 mice exhibited a profound pro-inflammatory phenotype, including increased serum interleukin-6 (IL-6) and γ-interferon (γ-IFN), and features of autoimmune disease.19, 20 The mice were tumor-prone displaying a complex tumor spectrum, but predominantly B-cell lymphomas and osteosarcomas. Thus, most evidence supports a role for the Δ133p53α isoform as a dominant oncogene that may interfere with normal FLp53 tumor-suppressor functions, but also has additional ''gain-of-function'' properties to promote tumor progression, probably through inflammatory mechanisms.21Given the above data, we reasoned that in an environment where p53 tumor-suppression capacity is compromised, such as in the context of the R72P allele22, 23, 24 or where p53 levels are reduced,25, 26, 27 the influence of Δ133p53α isoform on FLp53 function would be greater, leading to rapid tumor formation with a phenotype that would resemble that of the isoform alone. To test this, we generated mice heterozygous for Δ122p53 and a p53 mutant (mΔpro) that we previously described, that has attenuated tumor-suppressor activity.28, 29 The mΔpro mouse model is missing part of the p53 proline rich domain (PRD, amino acids 58–88). These mice are defective for DNA damage-induced apoptosis, and show a delayed and impaired cell cycle arrest response. Homozygous mΔpro mice develop late onset follicular B-cell tumors, while mΔpro heterozygotes developed few tumors in the presence of a wild-type p53 allele, or an early onset T-cell lymphoma in a p53-null background. In the latter case, the onset and tumor spectrum are indistinguishable from p53-null mice.28In the current study, we found that, in contrast to our hypothesis, many Δ122p53/mΔpro mice showed extended survival compared with Δ122p53 homozygotes. In vitro analyses to explain this phenomenon suggested that Δ122p53 allele can enhance mΔpro tumor-suppressor functions, in particular cell cycle arrest.  相似文献   

6.
ABSTRACT

Background: The páramo provides key ecosystem services, including regulation and provision of water. To understand the underlying functions, an ecosystem approach is necessary.

Aims: We quantified the combined effect of vegetation and soils (integrated topographic and vegetation units – TVU) on the hydrological balance of a Venezuelan páramo micro-watershed and analyse its hydrological response to intra- and interannual rainfall variability.

Methods: Data (2008–2016) from meteorological stations of TVUs and of a streamflow station was used to calculate watershed level hydrologic balances. We quantified the impact of the TVUs outputs by calculating evapotranspiration under non-standard conditions (ETc adj).

Result: Evapotranspiration of wetlands and tarns was high, exceeding annual precipitation. Shrubland had low evapotranspiration. Recharge of páramo reservoirs (soils, wetlands, tarns) occurred when monthly rainfall exceeded 90 mm. In dry years there were lower water yields with less effective hydrological regulation. In average years the differences between input and output in watershed balances were very small.

Conclusions: The high and constant evapotranspiration of the wetlands and tarns (due to permanent water availability) suggests they could maintain streamflow during dry periods. Their high evapotranspiration rates are compensated by low rates in shrublands units, reducing the mean total evapotranspiration of the watershed. The watershed balances suggest a limited regulatory capacity in these relatively dry páramos with no volcanic soils.  相似文献   

7.
p53 and ageing: too much of a good thing?   总被引:1,自引:0,他引:1  
A recent report by Tyner et al.(1) suggests that p53 is bad for longevity. Heterozygotic mice carrying a p53 mutation that apparently enhances the stability of the wild-type protein showed shorter lifespans and faster ageing while also developing fewer tumours. This fits with the idea that cellular ageing is the price paid for better protection against unlimited proliferation of cancer cells. But other work shows that there is a strong positive association between DNA repair-mediated protection against cancer and ageing. So what are we to make of the new data with regard to overall understanding of the mechanisms of ageing?  相似文献   

8.
We have previously found that a peptide corresponding to residues 35–47 of the ras-p21 protein, from its switch 1 effector domain region, strongly inhibits oocyte maturation induced by oncogenic p21, but not by insulin-activated cellular wild-type p21. Another ras–p21 peptide corresponding to residues 96–110 that blocks ras–jun and jun kinase (JNK) interactions exhibits a similar pattern of inhibition. We have also found that c-raf strongly induces oocyte maturation and that dominant negative c-raf strongly blocks oncogenic p21-induced oocyte maturation. We now find that the p21 35–47, but not the 96–110, peptide completely blocks c-raf-induced maturation. This finding suggests that the 35–47 peptide blocks oncogenic ras at the level of raf; that activated normal and oncogenic ras–p21 have differing requirements for raf-dependent signaling; and that the two oncogenic-ras-selective inhibitory peptides, 35–47 and 96–110, act at two different critical downstream sites, the former at raf, the latter at JNK/jun, both of which are required for oncogenic ras-p21 signaling.  相似文献   

9.
Peptide retro-inverso isomerization is thought to be functionally neutral and has been widely used as a tool for designing proteolytically stable d-isomers to recapitulate biological activities of their parent l-peptides. Despite success in a wide range of applications, exceptions amply exist that clearly defy this rule of thumb when parent l-peptides adopt an α-helical conformation in their bound state. The detrimental energetic effect of retro-inverso isomerization of an α-helical l-peptide on its target protein binding has been estimated to be 3.0–3.4 kcal/mol. To better understand how the retro-inverso isomer of a structured protein works at the molecular level, we chemically synthesized and functionally characterized the retro-inverso isomer of a rationally designed miniature protein termed stingin of 18 amino acid residues, which adopts an N-terminal loop and a C-terminal α-helix stabilized by two intra-molecular disulfide bridges. Stingin emulated the transactivation peptide of the p53 tumor suppressor protein and bound with high affinity and via its C-terminal α-helix to MDM2 and MDMX—the two negative regulators of p53. We also prepared the retro isomer and d-enantiomer of stingin for comparative functional studies using fluorescence polarization and surface plasmon resonance techniques. We found that retro-inverso isomerization of l-stingin weakened its MDM2 binding by 720 fold (3.9 kcal/mol); while enantiomerization of l-stingin drastically reduced its binding to MDM2 by three orders of magnitude, sequence reversal completely abolished it. Our findings demonstrate the limitation of peptide retro-inverso isomerization in molecular mimicry and reinforce the notion that the strategy works poorly with biologically active α-helical peptides due to inherent differences at the secondary and tertiary structural levels between an l-peptide and its retro-inverso isomer despite their similar side chain topologies at the primary structural level.1  相似文献   

10.
Skulachev VP 《IUBMB life》2000,49(3):177-180
Recently knockout of the gene encoding an adaptor protein (p66shc) was shown both to prolong the life span of an animal and to prevent apoptosis of cells in response to added H2O2 (Migliaccio et al. [1999] Nature 402, 309-313). A hypothesis is put forward in which p66shc is assumed to be involved in phenoptosis, i.e., programmed death of an organism, mediated by the reactive oxygen species-dependent massive apoptosis in an organ of vital importance. The reactive oxygen species are suggested to oxidize phosphatidyl serine in the inner leaflet of the cell plasma membrane, resulting in appearance of this phospholipid in the outer membrane leaflet, an effect recognized by a special receptor and causing the p66shc phosphorylation at a serine residue. Serine-phosphorylated p66shc there is proposed to block mitosis and initiate apoptosis. The large-scale apoptosis leads to phenoptosis and, hence, shortens the life span of the organism.  相似文献   

11.
Capitalizing on crystal structure information obtained from a previous effort in the search for non peptide inhibitors of the p53–MDM2 interaction, we have discovered another new class of compounds able to disrupt this protein–protein interaction, an important target in oncology drug research. The new inhibitors, based on a tetra-substituted imidazole scaffold, have been optimized to low nanomolar potency in a biochemical assay following a structure-guided approach. An appropriate strategy has allowed us to translate the high biochemical potency in significant anti-proliferative activity on a p53-dependent MDM2 amplified cell line.  相似文献   

12.
Much remains to be learned about how cancer cells acquire the property of migration, a prerequisite for invasiveness and metastasis. Loss of p53 functions is assumed to be a crucial step in the development of many types of cancers, leading to dysregulation of cell cycle checkpoint controls and apoptosis. However, emerging evidence shows that the contribution of the tumour suppressor p53 to the control of tumorigenesis is not restricted to its well-known anti-proliferative activities, but is extended to other stages of cancer development, i.e. the modulation of cell migration. This interesting alternative function has been proposed in light of the effect of p53 on specific features of migrating cells, including cell spreading, establishment of cell polarization and the production of protrusions. The effects of p53 on cell motility are largely mediated through the regulation of Rho signalling, thereby controlling actin cytoskeletal organization. These recent studies connect the regulation of proliferation to the control of cell migration and define a new concept of p53 function as a tumour suppressor gene, suggesting that p53 might be involved in tumour invasion and metastasis. This review focuses on emerging data concerning the properties of p53 that contribute to its atypical role in the regulation of cell migration.  相似文献   

13.
14.
15.
16.
A series of carbamoylmethylene linked prodrugs of 1 (BMS-582949), a clinical p38α inhibitor, were synthesized and evaluated. Though the phosphoryloxymethylene carbamates (3, 4, and 5) and α-aminoacyloxymethylene carbamates (22, 23, and 26) were found unstable at neutral pH values, fumaric acid derived acyloxymethylene carbamates (2, 28, and 31) were highly stable under both acidic and neutral conditions. Prodrugs 2 and 31 were also highly soluble at both acidic and neutral pH values. At a solution dose of 14.2 mpk (equivalent to 10 mpk of 1), 2 gave essentially the same exposure of 1 compared to dosing 10 mpk of 1 itself. At a suspension dose of 142 mpk (equivalent to 100 mpk of 1), 2 demonstrated that it could overcome the solubility issue associated with 1 and provide a much higher exposure of 1. To our knowledge, the unique type of prodrugs like 2, 28, and 31 was not reported in the past and could represent a novel prodrug approach for secondary amides, a class of molecules frequently identified as drug candidates.  相似文献   

17.
14-3-3 proteins regulate many cellular functions, including proliferation. However, the detailed mechanisms by which they control the cell cycle remain to be fully elucidated. We report that one of the 14-3-3 isoforms, 14-3-3τ, is required for the G1/S transition through its role in ubiquitin-independent proteasomal degradation of p21. 14-3-3τ binds to p21, MDM2, and the C8 subunit of the 20S proteasome in G1 phase and facilitates proteasomal targeting of p21. This function of 14-3-3τ may be deregulated in cancer. The overexpression of 14-3-3τ is frequently found in primary human breast cancer and correlates with lower levels of p21 and shorter patient survival. Tenascin-C, an extracellular matrix protein involved in tumor initiation and progression and a known 14-3-3τ inducer, decreases p21 and abrogates adriamycin-induced G1/S arrest. It has been known that p21 is required for a proper tamoxifen response in breast cancer. We show that the overexpression of 14-3-3τ inhibits tamoxifen-induced p21 induction and growth arrest in MCF7 cells. Together, the findings of our studies strongly suggest a novel oncogenic role of 14-3-3τ by downregulating p21 in breast cancer. Therefore, 14-3-3τ may be a potential therapeutic target in breast cancer.14-3-3 proteins are a family of about 30-kDa dimeric well-conserved α-helical phosphoserine/threonine binding proteins. They contain seven mammalian isoforms (β, ɛ, γ, η, σ, τ, ζ) and are able to bind to multiple protein ligands. The 14-3-3 binding proteins are very diverse; therefore, 14-3-3 is involved in many different cellular processes, including mitogenesis, DNA damage checkpoint, cell cycle control, and apoptosis (12). Most 14-3-3 ligands require phosphorylation to bind to 14-3-3; and their consensus motifs are R(S/Ar)XpSXP (mode 1), RX(Ar/S)XpSXP (mode 2) (12, 46), and (pS/pT)X1-2-COOH (mode 3) (13). However, this consensus is not absolutely required, since a few 14-3-3 binding ligands have sequences significantly different from the sequences of these motifs or do not even require phosphorylation for binding (12, 46).In general, 14-3-3 proteins play a role in promoting survival and repressing apoptosis (33). However, each isoform may have unique functions in certain physiological contexts. For example, 14-3-3τ binds to ATM-phosphorylated E2F1 during DNA damage and promotes E2F1 stability, leading to the induction of E2F1 proapoptotic target genes such as p73, Apaf1, and caspases (44). Like other 14-3-3 isoforms, however, there appears to be a role for 14-3-3τ in cell survival as well. The deletion of 14-3-3τ in mice leads to embryonic lethality, probably due to developmental arrest (25). Examination of 14-3-3τ+/ mice reveals a role for 14-3-3τ in cardiomyocyte survival (25). This is probably due to its activity that antagonizes ASK1 and sequesters BAD and FOXO family members. However, whether and how 14-3-3τ is involved in cell cycle progression remain poorly understood.In the study described here, we investigated the role of 14-3-3τ in cell cycle control and uncovered its involvement in the regulation of the cyclin-dependent kinase inhibitor p21(Waf1/Cip1). p21 is a p53 target gene and a major regulator that mediates p53-dependent G1 arrest and senescence. The turnover of the p21 protein is under very tight control. p21 can be degraded through both ubiquitin-dependent and ubiquitin-independent mechanisms. In the ubiquitin-dependent pathway, Skp2 and CRL4(Cdt2) are responsible for p21 degradation in S phase (1, 5, 23, 30, 48), whereas APC/CCdc20 controls the degradation of p21 in prometaphase (3). There are also data demonstrating that Skp2 is not required for basal p21 ubiquitylation and degradation (8). p21 can also be directly targeted to the proteasome for degradation without ubiquitylation (38). This process is mediated by an interaction between p21 and the C8 α subunit of the 20S proteasome (40) and can be promoted by MDM2 and MDMX (20, 21, 49). The MDM2/MDMX-regulated degradation of p21 occurs at the G1 and early S phases (21). The stability of the p21 protein is also regulated by heat shock proteins. An Hsp90 binding protein, WISp39, recruits Hsp90 to p21 and protects p21 from degradation during DNA damage (19). Therefore, it appears that several different regulators control the stability of the p21 protein, probably depending on the phases of the cell cycle and cellular contexts.Given the evidence of both ubiquitin-dependent and -independent degradation of p21, Pagano and colleagues proposed that both mechanisms of degradation of p21 in different protein complexes may occur in cells (3). It has been shown that free p21, but not cyclin E/cdk2-bound p21, can be degraded by the proteasome in vitro without ubiquitylation (4, 26, 27). Thus, when p21 is complexed with cdk2, it may be degraded by the ubiquitin-dependent pathway, while the ubiquitin-independent mechanism may target free p21 for degradation. It has been shown that this process involves the REGγ proteasome complex (7, 26), which forms the 11S lid and activates the 20S catalytic core proteasome. However, the regulatory mechanisms for the ubiquitin-independent degradation of p21 remain unclear.In the present study, we identify 14-3-3τ as the protein that regulates the ubiquitin-independent proteasomal degradation of p21 in G1 phase. We demonstrate a direct role for 14-3-3τ in the 20S-mediated p21 degradation via facilitation of an interaction between p21, MDM2, and C8 in vitro. This new role of 14-3-3τ might have an important clinical implication. The extracellular matrix tenascin-C induces 14-3-3τ and degrades p21 through the induction of 14-3-3τ and ameliorates adriamycin-induced cell cycle arrest. 14-3-3τ is often overexpressed in breast cancer, and its overexpression is associated with the downregulation of p21 and shorter patient survival. Through the downregulation of p21, 14-3-3τ overexpression also leads to tamoxifen resistance in MCF7 breast cancer cells.  相似文献   

18.
The p75 neurotrophin receptor, a member of the tumor necrosis factor receptor superfamily, is required as a co-receptor for the Nogo receptor (NgR) to mediate the activity of myelin-associated inhibitors such as Nogo, MAG, and OMgp. p45/NRH2/PLAIDD is a p75 homologue and contains a death domain (DD). Here we report that p45 markedly interferes with the function of p75 as a co-receptor for NgR. P45 forms heterodimers with p75 and thereby blocks RhoA activation and inhibition of neurite outgrowth induced by myelin-associated inhibitors. p45 binds p75 through both its transmembrane (TM) domain and DD. To understand the underlying mechanisms, we have determined the three-dimensional NMR solution structure of the intracellular domain of p45 and characterized its interaction with p75. We have identified the residues involved in such interaction by NMR and co-immunoprecipitation. The DD of p45 binds the DD of p75 by electrostatic interactions. In addition, previous reports suggested that Cys257 in the p75 TM domain is required for signaling. We found that the interaction of the cysteine 58 of p45 with the cysteine 257 of p75 within the TM domain is necessary for p45–p75 heterodimerization. These results suggest a mechanism involving both the TM domain and the DD of p45 to regulate p75-mediated signaling.  相似文献   

19.
24p3 and its receptor: dawn of a new iron age?   总被引:2,自引:0,他引:2  
Richardson DR 《Cell》2005,123(7):1175-1177
24p3 is a secreted protein that induces apoptosis in leukocytes. Recently, 24p3 has been shown to bind to iron-containing bacterial siderophores. In this issue of Cell, a receptor that internalizes 24p3 is identified. Internalization of iron bound to 24p3 prevents apoptosis. In contrast, internalization of the apo form of 24p3 that does not contain iron leads to cellular iron efflux and apoptosis via the proapoptotic protein Bim.  相似文献   

20.
Combination antiretroviral therapy (cART) can effectively suppress HIV-1 replication, but the latent viral reservoir in resting memory CD4+ T cells is impervious to cART and represents a major barrier to curing HIV-1 infection. Reactivation of latent HIV-1 represents a possible strategy for elimination of this reservoir. In this study we describe the discovery of 1,2,9,10-tetramethoxy-7H-dibenzo[de,g]quinolin-7-one (57704) which reactivates latent HIV-1 in several cell-line models of latency (J89GFP, U1 and ACH-2). 57704 also increased HIV-1 expression in 3 of 4 CD8+-depleted blood mononuclear cell preparations isolated from HIV-1-infected individuals on suppressive cART. In contrast, vorinostat increased HIV-1 expression in only 1 of the 4 donors tested. Importantly, 57704 does not induce global T cell activation. Mechanistic studies revealed that 57704 reactivates latent HIV-1 via the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway. 57704 was found to be an agonist of PI3K with specificity to the p110α isoform, but not the p110β, δ or γ isoforms. Taken together, our work suggests that 57704 could serve as a scaffold for the development of more potent activators of latent HIV-1. Furthermore, it highlights the involvement of the PI3K/Akt pathway in the maintenance of HIV-1 latency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号