首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 433 毫秒
1.
2.
Three previously studied mitochondrial genomes of glass sponges (phylum Porifera, class Hexactinellida) contained single nucleotide insertions in protein coding genes inferred as sites of + 1 translational frameshifting. To investigate the distribution and evolution of these sites and to help elucidate the mechanism of frameshifting, we determined eight new complete or nearly complete mtDNA sequences from glass sponges and examined individual mitochondrial genes from three others. We found nine new instances of single nucleotide insertions in these sequences and analyzed them both comparatively and phylogenetically. The base insertions appear to have been gained and lost repeatedly in hexactinellid mt protein genes, suggesting no functional significance for the frameshifting sites. A high degree of sequence conservation, the presence of unusual tRNAs, and a distinct pattern of codon usage suggest the “out-of-frame pairing” model of translational frameshifting. Additionally, we provide evidence that relaxed selection pressure on glass sponge mtDNA – possibly a result of their low growth rates and deep-water lifestyle – has allowed frameshift insertions to be tolerated for hundreds of millions of years. Our study provides the first example of a phylogenetically diverse and extensive usage of translational frameshifting in animal mitochondrial coding sequences.  相似文献   

3.
Yang F  Du YZ  Wang LP  Cao JM  Yu WW 《Gene》2011,485(1):7-15
The complete mitochondrial genome sequence of Liriomyza sativae Blanchard (15,551 bp) was determined and analyzed in this study. The circular genome contained 37 genes including 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes and an A + T-rich region. The initiation codons of COI and ND1 were ‘ATCA’ and ‘GTG’, respectively. ND2 gene used the truncated termination codon ‘T’. All the tRNA genes had the typical cloverleaf secondary structures except for tRNASer(AGN) gene, which was found with the absence of a DHU arm. In addition, a tRNA-like secondary structure (tRNAMet) was found in the A + T-rich region. The great difference was that the length of L. sativae A + T-rich region was 597 bp shorter than that of Liriomyza trifolii (Burgess). Meanwhile, some minor differences such as ‘TATA’ block were also observed in L. sativae in contrast to ‘TACA’ block in L. trifolii. There were also some essential structure elements such as ‘TATA’ block, ‘G(A)nT’ block, poly-T stretch and stem-and-loop structure in the A + T-rich region of L. sativae mitochondrial genome.  相似文献   

4.
目的:利用大肠杆菌融合表达酮古龙酸菌细胞色素c氧化酶亚基Ⅱ(CcoⅡ)与谷胱甘肽S-转移酶(GST)并纯化。方法:根据酮古龙酸菌Y25基因组序列设计引物,通过PCR扩增CcoⅡ基因,酶切后连接pGEX-KG表达载体,转化至大肠杆菌获得重组菌,经IPTG诱导表达融合蛋白GST-CcoⅡ,用谷胱甘肽-Sepharose 4B树脂亲和纯化融合蛋白,并利用Western印迹及质谱对表达蛋白进行鉴定。结果:扩增得到867 bp的CcoⅡ基因,构建了pGEX-KG-CcoⅡ融合表达载体,重组菌经0.4 mmol/L IPTG于20℃诱导16 h,SDS-PAGE分析显示有可溶性表达条带,相对分子质量约为59×103;Western印迹及质谱分析表明,利用亲和层析方法纯化到了目的蛋白。结论:表达并纯化了GST-CcoⅡ融合蛋白,为酮古龙酸菌电子传递链的研究奠定了基础。  相似文献   

5.
DEAD-box proteins are RNA-dependent ATPase enzymes that have been implicated in nearly all aspects of RNA metabolism. Since many of these enzymes have been shown to possess common biochemical properties in vitro, including the ability to bind and hydrolyze ATP, to bind nucleic acid, and to promote helix unwinding, DEAD-box proteins are generally thought to modulate RNA structure in vivo. However, the extent to which these enzymatic properties are important for the in vivo functions of DEAD-box proteins remains unclear. To evaluate how these properties influence DEAD-box protein native function, we probed the importance of several highly conserved residues in the yeast DEAD-box protein Mss116p, which is required for the splicing of all mitochondrial catalytic introns in Saccharomyces cerevisiae. Using an MSS116 deletion strain, we have expressed plasmid-borne variants of MSS116 containing substitutions in residues predicted to be important for extensive networks of interactions required for ATP hydrolysis and helix unwinding. We have analyzed the importance of these residues to the splicing functions of Mss116p in vivo and compared these results with the biochemical properties of recombinant proteins determined here and in previously published work. We observed that the efficiency by which an Mss116p variant catalyzes ATP hydrolysis correlates with facilitating mitochondrial splicing, while efficient helix unwinding appears to be insufficient for splicing. In addition, we show that each splicing-defective variant affects the splicing of structurally diverse introns to the same degree. Together, these observations suggest that the efficiency by which Mss116p catalyzes the hydrolysis of ATP is critical for all of its splicing functions in vivo. Given that ATP hydrolysis stimulates the recycling of DEAD-box proteins, these observations support a model in which enzyme turnover is a crucial factor in Mss116p splicing function. These results are discussed in the context of current models of Mss116p-facilitated splicing.  相似文献   

6.
The mitochondrion is a unique organelle that serves as the main site of ATP generation needed for energy in the cell. However, mitochondria also play essential roles in cell death through apoptosis and necrosis, as well as a variety of crucial functions related to stress regulation, autophagy, lipid synthesis and calcium storage. There is a growing appreciation that mitochondrial function is regulated by the dynamics of its membrane fusion and fission; longer, fused mitochondria are optimal for ATP generation, whereas fission of mitochondria facilitates mitophagy and cell division. Despite the significance of mitochondrial homeostasis for such crucial cellular events, the intricate regulation of mitochondrial fusion and fission is only partially understood. Until very recently, only a single mitochondrial fission protein had been identified. Moreover, only now have researchers turned to address the upstream machinery that regulates mitochondrial fusion and fission proteins. Herein, we review the known GTPases involved in mitochondrial fusion and fission, but also highlight recent studies that address the mechanisms by which these GTPases are regulated. In particular, we draw attention to a substantial new body of literature linking endocytic regulatory proteins, such as the retromer VPS35 cargo selection complex subunit, to mitochondrial homeostasis. These recent studies suggest that relationships and cross‐regulation between endocytic and mitochondrial pathways may be more widespread than previously assumed.   相似文献   

7.
8.
Tuco-tucos (Ctenomys) and related coruros (Spalacopus) are South American subterranean rodents. An energetically demanding lifestyle within the hypoxic, underground atmosphere may change the selective regime on oxidative phosphorylation. We examined whether weak and/or episodic positive directional selection affected the evolution of two mitochondrial genes (COX2, CytB), in a background of purifying selection in these lineages. We estimated rates of synonymous (dS) and non-synonymous (dN) substitutions and found: 1) significantly higher dN/dS ratio in subterranean groups relative to non-subterranean related species, and 2) two codons in each gene under episodic selection: 94 and 277 of COX2 and 269 and 307 of CytB.  相似文献   

9.
We report rapid change of morphology and mitochondrial genes in white-footed mice (Peromyscus leucopus) in the Chicago (Illinois, USA) region. We sequenced mitochondrial DNA COX2 from 55 museum skins of white-footed mice caught in the Chicago area since 1855 and from 44 mice recently trapped in the same locations. We found consistent directional genotype replacement at five separate collection locations. We later focused on a single one of these locations (Volo Bog State Natural Area) and sequenced mitochondrial D-loop control region from 58 museum skins of mice collected in 1903-1976 and 32 mice recently trapped there. We found complete and more recent replacement of D-loop haplotypes, apparently occurring between 1976 and 2001. We tested whether these genetic changes were mirrored by changes in morphology by comparing 15 external and cranial traits. We found no significant morphological differences between mice collected in 1903-1976; however, mice collected in 2001-2003 showed 9 of 15 measurements to be significantly changed relative to the earlier samples. Recent mice were longer in total length, with broader, longer noses, and longer but shallower skulls(1). Discriminant function analysis allowed for 100% correct classification using these traits. Principal components analysis shows variance over time is well distributed across both external and cranial measures. The sequential replacements of haplotypes and the rapid change of morphology can best be explained by replacement of the regional population with immigrants from genetically distinct neighbouring populations, likely facilitated by the large environmental changes occurring over the time period. Replacement with genotypes from external populations may be a common mechanism of evolution of newly adaptive local forms in an increasingly human-impacted world.  相似文献   

10.
Human adaptor protein, phosphotyrosine interaction, PH domain and leucine zipper containing 1 (APPL1) and adaptor protein, phosphotyrosine interaction, PH domain and leucine zipper containing 2 (APPL2) are homologous effectors of the small guanosine triphosphatase RAB5 that interact with a diverse set of receptors and signaling proteins and are proposed to function in endosome-mediated signaling. Herein, we investigated the membrane-targeting properties of the APPL1 and APPL2 Bin/Amphiphysin/Rvs (BAR), pleckstrin homology (PH) and phosphotyrosine binding (PTB) domains. Coimmunoprecipitation and yeast two-hybrid studies demonstrated that full-length APPL proteins formed homooligomers and heterooligomers and that the APPL minimal BAR domains were necessary and sufficient for mediating APPL-APPL interactions. When fused to a fluorescent protein and overexpressed, all three domains (minimal BAR, PH and PTB) were targeted to cell membranes. Furthermore, full-length APPL proteins bound to phosphoinositides, and the APPL isolated PH or PTB domains were sufficient for in vitro phosphoinositide binding. Live cell imaging showed that full-length APPL-yellow fluorescent protein (YFP) fusion proteins associated with cytosolic membrane structures that underwent movement, fusion and fission events. Overexpression of full-length APPL-YFP fusion proteins was sufficient to recruit endogenous RAB5 to enlarged APPL-associated membrane structures, although APPL1 was not necessary for RAB5 membrane targeting. Taken together, our findings suggest a role for APPL proteins as dynamic scaffolds that modulate RAB5-associated signaling endosomal membranes by their ability to undergo domain-mediated oligomerization, membrane targeting and phosphoinositide binding.  相似文献   

11.
Sequence diversity in the cytochrome c oxidase subunit 1 gene has been shown to be an effective tool for species identification and discovery in various groups of animals, but has not been extensively tested in mammals. We address this gap by examining the performance of DNA barcodes in the discrimination of 87 species of bats from Guyana. Eighty‐one of these species showed both low intraspecific variation (mean = 0.60%), and clear sequence divergence from their congeners (mean = 7.80%), while the other six showed deeply divergent intraspecific lineages suggesting that they represent species complexes. Although further work is needed to examine patterns of sequence diversity at a broader geographical scale, the present study validates the effectiveness of barcoding for the identification of regional bat assemblages, even highly diverse tropical faunas.  相似文献   

12.
Hyles t. tithymali on the Canary Islands has been observed to occur in two larval morphotypes, connected by intermediate forms along a geographical cline from east to west. In this study, it was tested whether this distribution of phenotypes reflects a genealogical division of the population. mtDNA sequence data (COI + II, tRNA-leu) and genomic fingerprints from intersimple sequence repeat (ISSR)-PCR data were used. The sequence data had low variation (max. 0.4%), and phylogenetic analyses did not reveal groups that correlated with the morphotype. The samples did not group according to their island of origin and the most common haplotype was shared among all islands. Although nine haplotypes occurred only on the westernmost islands, the data showed little phylogeographical structure. The population of H. t. tithymali appears to reflect a comparatively rapid and recent colonization event of the Canary Islands. The ISSR-PCR data were very variable and did not reveal patterns corresponding to morphological variation or geographical distribution. Although the two morphs observed may represent the first stage of differentiation between two lineages, the recent origin of H. t. tithymali provided insufficient time for complete lineage sorting of ancestral polymorphism. Hence, the population of Hyles t. tithymali on the Canary Islands appears genetically more homogeneous than that was expected from the phenotypic distribution of the two morphotypes in the population.  相似文献   

13.
The gene encoding cytochrome c-553 from Desulfovibrio vulgaris (Miyazaki F) was cloned using a synthetic oligodeoxyribonucleotide probe. The nucleotide sequence indicated that cytochrome c-553 was synthesized as a precursor protein with an NH2-terminal signal sequence of 23 residues. In the cloned DNA fragment, there are three other open reading frames whose products have 191, 157, 541 amino acid residues, respectively. The putative ORF-4 product is highly homologous with the cytochrome c oxidase subunit I from various organisms.  相似文献   

14.
Pyruvate dehydrogenase phosphatase 1 (PDP1) catalyzes dephosphorylation of pyruvate dehydrogenase (E1) in the mammalian pyruvate dehydrogenase complex (PDC), whose activity is regulated by the phosphorylation-dephosphorylation cycle by the corresponding protein kinases (PDHKs) and phosphatases. The activity of PDP1 is greatly enhanced through Ca2+ -dependent binding of the catalytic subunit (PDP1c) to the L2 (inner lipoyl) domain of dihydrolipoyl acetyltransferase (E2), which is also integrated in PDC. Here, we report the crystal structure of the rat PDP1c at 1.8 A resolution. The structure reveals that PDP1 belongs to the PPM family of protein serine/threonine phosphatases, which, in spite of a low level of sequence identity, share the structural core consisting of the central beta-sandwich flanked on both sides by loops and alpha-helices. Consistent with the previous studies, two well-fixed magnesium ions are coordinated by five active site residues and five water molecules in the PDP1c catalytic center. Structural analysis indicates that, while the central portion of the PDP1c molecule is highly conserved among the members of the PPM protein family, a number of structural insertions and deletions located at the periphery of PDP1c likely define its functional specificity towards the PDC. One notable feature of PDP1c is a long insertion (residues 98-151) forming a unique hydrophobic pocket on the surface that likely accommodates the lipoyl moiety of the E2 domain in a fashion similar to that of PDHKs. The cavity, however, appears more open than in PDHK, suggesting that its closure may be required to achieve tight, specific binding of the lipoic acid. We propose a mechanism in which the closure of the lipoic acid binding site is triggered by the formation of the intermolecular (PDP1c/L2) Ca2+ binding site in a manner reminiscent of the Ca2+ -induced closure of the regulatory domain of troponin C.  相似文献   

15.
Patterns of differentiation in morphology, mitochondrial DNA and allozymes in amphibians and reptiles inhabiting northern and southern shores of the Strait of Gibraltar are not concordant, suggesting that each taxon was affected differently by events preceding or following the formation of the Strait of Gibraltar. Mitochondrial DNA and allozyme differentiation between Discoglossus jeanneae and Discoglossus scovazzi (Anura, Discoglossidae), Rana perezi and Rana saharica (Anura, Ranidae), and Blanus cinereus and Blanus tingitanus (Squamata, Amphisbaenia, Amphisbaenidae) is substantial, whereas morphological differentiation is moderate in Rana and Blanus , but is substantial in Discoglossus . Differentiation in mitochondrial DNA and morphology between Timon ( Lacerta ) lepidus and Timon ( Lacerta ) tangitanus (Squamata, Lacertoidea, Lacertidae) is considerable, but allozyme differentiation is low. In members of type-I and -II Podarcis vaucheri (Squamata, Lacertoidea, Lacertidae), morphology and mitochondrial DNA are moderately differentiated, but allozyme differentiation is low. Spanish and Moroccan populations of Hyla meridionalis (Anura, Hylidae), Mauremys leprosa (Testudines, Geoemydidae), and Macroprotodon brevis (Squamata, Serpentes, Colubridae) demonstrate little allozyme and mitochondrial DNA differentiation, but whereas morphological differentiation between Mauremys and Macroprotodon populations is moderate, Hyla demonstrate substantial morphological differentiation between continental populations. These data suggest that sex-limited mitochondrial markers are reflective of ancient phylogenetic history, whereas biparentally inherited allozyme markers and morphological characteristics reflect more recent population structure and movement.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 94 , 445–461.  相似文献   

16.
Redox state of pyridine nucleotides of the endoplasmic reticulum (ER) lumen was determined in different nutritional conditions. NADPH-dependent cortisone reduction and NADP+-dependent cortisol oxidation were measured in rat liver microsomes, by utilizing the luminal 11β-hydroxysteroid dehydrogenase type 1 activity. Cortisone reduction decreased, while cortisol oxidation increased during onward starvation, showing that the luminal NADPH/NADP+ ratio was substantially decreased. Cortisone or metyrapone addition caused a smaller decrease in NADPH fluorescence in microsomes from starved rats. The results demonstrate that nutrient supply is mirrored by the redox state of ER luminal pyridine nucleotides.  相似文献   

17.
Defects in mitochondrial respiratory chain complex IV (CIV) frequently cause encephalocardiomyopathies. Human CIV assembly involves 14 subunits of dual genetic origin and multiple nucleus‐encoded ancillary factors. Biogenesis of the mitochondrion‐encoded copper/heme‐containing COX1 subunit initiates the CIV assembly process. Here, we show that the intermembrane space twin CX9C protein CMC1 forms an early CIV assembly intermediate with COX1 and two assembly factors, the cardiomyopathy proteins COA3 and COX14. A TALEN‐mediated CMC1 knockout HEK293T cell line displayed normal COX1 synthesis but decreased CIV activity owing to the instability of newly synthetized COX1. We demonstrate that CMC1 stabilizes a COX1‐COA3‐COX14 complex before the incorporation of COX4 and COX5a subunits. Additionally, we show that CMC1 acts independently of CIV assembly factors relevant to COX1 metallation (COX10, COX11, and SURF1) or late stability (MITRAC7). Furthermore, whereas human COX14 and COA3 have been proposed to affect COX1 mRNA translation, our data indicate that CMC1 regulates turnover of newly synthesized COX1 prior to and during COX1 maturation, without affecting the rate of COX1 synthesis.  相似文献   

18.
The fall webworm, Hyphantria cunea (Drury) (Lepidoptera: Arctiidae), was introduced from North America into Japan in 1945. For the first three decades after its introduction, its life cycle was bivoltine. Thereafter, its life cycle shifted to trivoltine in south‐western areas of Japan. Two hypotheses have been proposed for the process that led to the shift in voltinism: one based on a single and the other on multiple independent colonizations. To test these hypotheses, mitochondrial (mt)DNA sequences were analyzed in the black‐headed type of 14 Japanese, one Korean and two North American populations of H. cunea. In addition, the same regions of mtDNA were compared with the red‐headed type of two North American populations. In the black‐headed type, mtDNA sequences were the same in all Japanese populations and in the Korean population, but sequences of the North American populations differed from each other and from those of the other populations. These results suggest that the process of the shift in voltinism occurred originally in Japan, and that the Japanese and the Korean population of H. cunea originated from a relatively small area in North America.  相似文献   

19.
Until now c-series polysialogangliosides were known to exist in human brain only during development and in some pathological conditions like Alzheimers disease. Using thin-layer chromatography (TLC) and immunostaining with Q211 antibody (TLC-overlay technique) we have analysed c-series gangliosides in four human cerebella (age 20, 47, 52 and 54 years). Four distinct ganglioside bands, most probably corresponding to GT1c, GQ1c, GP1c and GH1c were found to exist in the analysed brains, which is convincing demonstration of the existence of c-series gangliosides in normal adult human brain. Immunohistochemical analysis was performed to locate polysialogangliosides in the analysed tissue. Q211 antibody was found to bind specifically to a single subpopulation of neurons in the molecular layer of adult cerebellum. According to their position and morphology these cells correspond to stellate neurons. © 1998 Rapid Science Ltd  相似文献   

20.
Neutrophils are the main defense cells of the innate immune system. Upon stimulation, neutrophils release their chromosomal DNA to trap and kill microorganisms and inhibit their dissemination. These chromatin traps are termed neutrophil extracellular traps (NETs) and are decorated with granular and cytoplasm proteins. NET release can be induced by several microorganism membrane components, phorbol 12-myristate 13-acetate as well as by amyloid fibrils, insoluble proteinaceous molecules associated with more than 40 different pathologies among other stimuli. The intracellular signaling involved in NET formation is complex and remains unclear for most tested stimuli. Herein we demonstrate that a metabolic shift toward the pentose phosphate pathway (PPP) is necessary for NET release because glucose-6-phosphate dehydrogenase (G6PD), an important enzyme from PPP, fuels NADPH oxidase with NADPH to produce superoxide and thus induce NETs. In addition, we observed that mitochondrial reactive oxygen species, which are NADPH-independent, are not effective in producing NETs. These data shed new light on how the PPP and glucose metabolism contributes to NET formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号