首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies of nucleotide diversity have found an excess of low-frequency amino acid polymorphisms segregating in Arabidopsis thaliana, suggesting a predominance of weak purifying selection acting on amino acid polymorphism in this inbreeding species. Here, we investigate levels of diversity and divergence at synonymous and nonsynonymous sites in 6 circumpolar populations of the outbreeding Arabidopsis lyrata and compare these results with A. thaliana, to test for differences in mutation and selection parameters across genes, populations, and species. We find that A. lyrata shows an excess of low-frequency nonsynonymous polymorphisms both within populations and species wide, consistent with weak purifying selection similar to the patterns observed in A. thaliana. Furthermore, nonsynonymous polymorphisms tend to be more restricted in their population distribution in A. lyrata, consistent with purifying selection preventing their geographic spread. Highly expressed genes show a reduced ratio of amino acid to synonymous change for both polymorphism and fixed differences, suggesting a general pattern of stronger purifying selection on high-expression proteins.  相似文献   

2.
Widespread positive selection in synonymous sites of mammalian genes   总被引:5,自引:0,他引:5  
Evolution of protein sequences is largely governed by purifying selection, with a small fraction of proteins evolving under positive selection. The evolution at synonymous positions in protein-coding genes is not nearly as well understood, with the extent and types of selection remaining, largely, unclear. A statistical test to identify purifying and positive selection at synonymous sites in protein-coding genes was developed. The method compares the rate of evolution at synonymous sites (Ks) to that in intron sequences of the same gene after sampling the aligned intron sequences to mimic the statistical properties of coding sequences. We detected purifying selection at synonymous sites in approximately 28% of the 1,562 analyzed orthologous genes from mouse and rat, and positive selection in approximately 12% of the genes. Thus, the fraction of genes with readily detectable positive selection at synonymous sites is much greater than the fraction of genes with comparable positive selection at nonsynonymous sites, i.e., at the level of the protein sequence. Unlike other genes, the genes with positive selection at synonymous sites showed no correlation between Ks and the rate of evolution in nonsynonymous sites (Ka), indicating that evolution of synonymous sites under positive selection is decoupled from protein evolution. The genes with purifying selection at synonymous sites showed significant anticorrelation between Ks and expression level and breadth, indicating that highly expressed genes evolve slowly. The genes with positive selection at synonymous sites showed the opposite trend, i.e., highly expressed genes had, on average, higher Ks. For the genes with positive selection at synonymous sites, a significantly lower mRNA stability is predicted compared to the genes with negative selection. Thus, mRNA destabilization could be an important factor driving positive selection in nonsynonymous sites, probably, through regulation of expression at the level of mRNA degradation and, possibly, also translation rate. So, unexpectedly, we found that positive selection at synonymous sites of mammalian genes is substantially more common than positive selection at the level of protein sequences. Positive selection at synonymous sites might act through mRNA destabilization affecting mRNA levels and translation.  相似文献   

3.
Hughes AL 《Gene》2007,392(1-2):266-272
In the seven protein-coding genes in the Marburg virus (MARV) genome, the synonymous nucleotide diversity substantially exceeded the nonsynonymous nucleotide diversity, indicating strong purifying selection. Likewise, there was evidence of purifying selection on 5'UTR and 3'UTR, where nucleotide diversity (pi) was significantly less than piS in the coding regions. Nonsynonymous polymorphic sites showed significantly reduced mean gene diversity in comparison to other polymorphic sites, indicating that purifying selection at certain slightly deleterious nonsynonymous polymorphisms is ongoing. Moreover, nonsynonymous polymorphic sites showed significantly reduced gene diversity in comparison to adjacent synonymous sites, even though the vast majority of such adjacent synonymous sites were in the same codon or an adjacent codon. Thus purifying selection, in conjunction with recombination and/or backward mutation, can act to break up linkage relationships at a micro-scale in the MARV genome. The ability of purifying selection to break up linkage between synonymous and nonsynonymous polymorphisms on such a fine scale has not been reported in any other genome.  相似文献   

4.
Comparison of the ratio of nonsynonymous to synonymous polymorphisms within species with the ratio of nonsynonymous to synonymous substitutions between species has been widely used as a supposed indicator of positive Darwinian selection, with the ratio of these 2 ratios being designated as a neutrality index (NI). Comparison of genome-wide polymorphism within 12 species of bacteria with divergence from an outgroup species showed substantial differences in NI among taxa. A low level of nonsynonymous polymorphism at a locus was the best predictor of NI < 1, rather than a high level of nonsynonymous substitution between species. Moreover, genes with NI < 1 showed a strong tendency toward the occurrence of rare nonsynonymous polymorphisms, as expected under the action of ongoing purifying selection. Thus, our results are more consistent with the hypothesis that a high relative rate of between-species nonsynonymous substitution reflects mainly the action of purifying selection within species to eliminate slightly deleterious mutations rather than positive selection between species. This conclusion is consistent with previous results highlighting an important role of slightly deleterious variants in bacterial evolution and suggests caution in the use of the McDonald-Kreitman test and related statistics as tests of positive selection.  相似文献   

5.
Hughes AL 《Genetics》2005,169(2):533-538
The nearly neutral theory of molecular evolution predicts that slightly deleterious mutations subject to purifying selection are widespread in natural populations, particularly those of large effective population size. To test this hypothesis, the standardized difference between pairwise nucleotide difference and number of segregation sites (corrected for number of sequences) was estimated for 149 population data sets from 84 species of bacteria. This quantity (Tajima's D-statistic) was estimated separately for synonymous (D(syn)) and nonsynonymous (D(non)) polymorphisms. D(syn) was positive in 70% of data sets, and the overall median D(syn) (0.873) was positive. By contrast D(non) was negative in 68% of data sets, and the overall median D(non) (-0.656) was negative. The preponderance of negative values of D(non) is evidence that there are widespread rare nonsynonymous polymorphisms in the process of being eliminated by purifying selection, as predicted to occur in populations with large effective size by the nearly neutral theory. The major exceptions to this trend were seen among surface proteins, particularly those of bacteria parasitic on vertebrates, which included a number of cases of polymorphisms apparently maintained by balancing selection.  相似文献   

6.
The human SNP database was used to detect selection on 238 hexamers previously identified as exonic splicing enhancers (ESEs). We compared the distribution of the 238 putative ESEs in biallelic and triallelic SNPs within five different functional categories of the SNP database: synonymous, nonsynonymous, introns, UTRs, and nongenic SNPs. Since true ESEs do not function outside of exons, SNPs that disrupt ESE motifs were expected to be more common in nonexonic portions of the genome. Our results supported this expectation: ESEs were least prevalent within synonymous SNPs and most common in nongenic SNPs. There were ∼11% fewer ESEs within synonymous biallelic SNPs than expected under no selective constraint. We also compared the frequency of neutral SNPs, those where neither allele was an ESE, with deleterious SNPs, those where one or more alleles was an ESE, across the five different functional classes of SNPs. In comparison with the other functional classes of SNPs, synonymous SNPs contained an excess of neutral variants (+1.64% and +6.04% for biallelic and triallelic SNPs, respectively) and a dearth of deleterious variants (−13.11% and −52.39% for biallelic and triallelic SNPs, respectively). The observed patterns were consistent with purifying selection on the 238 hexamers to maintain their function as ESEs. However, in contrast to previous work, we did not find evidence for selection to maintain ESE function at nonsynonymous SNPs because selection at the protein level probably obscured any difference at the level of ESE function.  相似文献   

7.
The transition from outcrossing to selfing is predicted to reduce the genome-wide efficacy of selection because of the lower effective population size (Ne) that accompanies this change in mating system. However, strongly recessive deleterious mutations exposed in the homozygous backgrounds of selfers should be under strong purifying selection. Here, we examine estimates of the distribution of fitness effects (DFE) and changes in the magnitude of effective selection coefficients (Nes) acting on mutations during the transition from outcrossing to selfing. Using forward simulations, we investigated the ability of a DFE inference approach to detect the joint influence of mating system and the dominance of deleterious mutations on selection efficacy. We investigated predictions from our simulations in the annual plant Eichhornia paniculata, in which selfing has evolved from outcrossing on multiple occasions. We used range-wide sampling to generate population genomic datasets and identified nonsynonymous and synonymous polymorphisms segregating in outcrossing and selfing populations. We found that the transition to selfing was accompanied by a change in the DFE, with a larger fraction of effectively neutral sites (Nes < 1), a result consistent with the effects of reduced Ne in selfers. Moreover, an increased proportion of sites in selfers were under strong purifying selection (Nes > 100), and simulations suggest that this is due to the exposure of recessive deleterious mutations. We conclude that the transition to selfing has been accompanied by the genome-wide influences of reduced Ne and strong purifying selection against deleterious recessive mutations, an example of purging at the molecular level.  相似文献   

8.
中国野桑蚕遗传多样性的AFLP分析   总被引:18,自引:1,他引:17  
采用AFLP技术对我国具有代表性的7个省市的10个野桑蚕(Bombyx mandarina)种群和2个家蚕(Bombyx mori)品种的遗传多样性进行了研究。结果表明:杭州、陕西和重庆3个地区的野桑蚕种群间及种群内个体间的遗传距离都比家蚕品种大。野桑蚕存在广泛的变异,7个省市的10个野桑蚕种群之间的遗传距离为0.164-0.444(平均值为0.3826),平均杂合度为0.7061,表明野桑蚕自然群体的遗传多样性十分丰富。  相似文献   

9.
10.
11.
We estimated DNA sequence variation of the Adh1 locus in the outcrossing Miscanthus sinensis (Poaceae) and its close selfing relative, M. condensatus. Tajima's test of selection is significantly negative for both overall exons and replacement sites in M. sinensis. Among its entire sample, nucleotide diversity of nonsynonymous sites is higher than that of synonymous sites. A McDonald and Kreitman test of neutrality indicates an excess of intraspecific replacement polymorphisms, suggesting possible directional selection toward advantageous mutants. However, frequent intragenic recombination suggests both purifying and positive selection is unlikely. Recent demographic expansions coupled with relaxation of purifying selection may have resulted in elevated genetic diversity at the Adh1 locus as well as the trnL-trnF intergenic spacer of cpDNA in this outcrossing species. In contrast, low levels of genetic diversity were detected at both the Adh1 locus and the cpDNA spacer in M. condensatus, consistent with bottlenecks associated with selfing in all populations. While Tajima's D and Fu and Li's F statistics did not reveal deviation from neutrality at the Adh1 locus in M. condensatus, 12 replacements vs. 10 synonymous changes were detected. Based on pairwise comparisons of the d(N)/d(S) ratio, lineages of closely related populations of the species distributed along saline habitats appeared to be under directional selection.  相似文献   

12.
Despite growing evidence of rapid evolution in protein coding genes, the contribution of positive selection to intra- and interspecific differences in protein coding regions of the genome is unclear. We attempted to see if genes coding for secreted proteins and genes with narrow expression, specifically those preferentially expressed in the mammary gland, have diverged at a faster rate between domestic cattle (Bos taurus) and humans (Homo sapiens) than other genes and whether positive selection is responsible. Using a large data set, we identified groups of genes based on secretion and expression patterns and compared them for the rate of nonsynonymous (dN) and synonymous (dS) substitutions per site and the number of radical (Dr) and conservative (Dc) amino acid substitutions. We found evidence of rapid evolution in genes with narrow expression, especially for those expressed in the liver and mammary gland and for genes coding for secreted proteins. We compared common human polymorphism data with human-cattle divergence and found that genes with high evolutionary rates in human-cattle divergence also had a large number of common human polymorphisms. This argues against positive selection causing rapid divergence in these groups of genes. In most cases dN/dS ratios were lower in human-cattle divergence than in common human polymorphism presumably due to differences in the effectiveness of purifying selection between long-term divergence and short-term polymorphism.  相似文献   

13.
Although there are some documented examples on population dynamics of transposable elements (TEs) in model organisms, the evolutionary dynamics of TEs in domesticated species has not been systematically investigated. The objective of this study is to understand population dynamics of TEs during silkworm domestication. In this work, using transposon-display we examined the polymorphism of seven TE families [they represent about 59% of silkworm (Bombyx mori) total TE content] in four domesticated silkworm populations and one wild silkworm population. Maximum likelihood (ML) was used to estimate selection pressure. Population differentiation and structure were performed by using AMOVA analysis and program DISTRUCT, respectively. The results of transposon-display showed that significant differentiation occurred between the domesticated silkworm and wild silkworm. These TEs have experienced expansions and fixation in the domesticated silkworm but not in wild silkworm. Furthermore, the ML results indicated that purifying selection of TEs in the domesticated silkworm were significantly weaker than that in the wild silkworm. Interestingly, an adaptation insertion induced by BmMITE-2 was found, and this insertion can reduce the polymorphism of the flanking regions of its neighboring COQ7 gene. Our results suggested that TEs expanded and were fixed in the domesticated silkworm might result from demographic effects and artificial selection during domestication. We concluded that the data presented in this study have general implication in animal and crop improvements as well as in domestication of new species.  相似文献   

14.
Several studies have shown that immune system proteins have on average a higher rate of amino acid evolution between different species of mammals than do most other proteins. To test whether immune-system-expressed loci show a correspondingly elevated rate of within-species nonsynonymous (amino acid altering) polymorphism, we examined gene diversity (heterozygosity) at 4,911 single nucleotide polymorphism (SNP) sites at 481 protein-coding loci. At loci with nonimmune functions, gene diversity at nonsynonymous SNP sites was typically lower than that at silent SNP sites (those not altering the amino acid sequence) in the same gene, a pattern that is an evidence of purifying selection acting to eliminate slightly deleterious variants. However, this pattern was not seen at nonsynonymous SNPs causing conservative amino acid replacements in immune system proteins, indicating that the latter are subject to a reduced level of functional constraint. Similarly, immune system genes showed higher gene diversities in their 5′ noncoding regions than did other proteins. These results identified certain immune system loci that are likely to be subject to balancing selection that acts to maintain polymorphism in either coding or regulatory regions. Electronic Supplementary Material Supplementary material is available for this article at .  相似文献   

15.
The Périgord black truffle (Tuber melanosporum Vittad.), considered a gastronomic delicacy worldwide, is an ectomycorrhizal filamentous fungus that is ecologically important in Mediterranean French, Italian and Spanish woodlands. In this study, we developed a novel resource of single nucleotide polymorphisms (SNPs) for T. melanosporum using Illumina high‐throughput resequencing. The genome from six T. melanosporum geographical accessions was sequenced to a depth of approximately 20×. These geographical accessions were selected from different populations within the northern and southern regions of the geographical species distribution. Approximately 80% of the reads for each of the six resequenced geographical accessions mapped against the reference T. melanosporum genome assembly, estimating the core genome size of this organism to be approximately 110 Mbp. A total of 442 326 SNPs corresponding to 3540 SNPs/Mbps were identified as being included in all seven genomes. The SNPs occurred more frequently in repeated sequences (85%), although 4501 SNPs were also identified in the coding regions of 2587 genes. Using the ratio of nonsynonymous mutations per nonsynonymous site (pN) to synonymous mutations per synonymous site (pS) and Tajima's D index scanning the whole genome, we were able to identify genomic regions and genes potentially subjected to positive or purifying selection. The SNPs identified represent a valuable resource for future population genetics and genomics studies.  相似文献   

16.
One method for diagnosing the mode of sequence evolution considers the ratio of nonsynonymous substitutions per nonsynonymous site (K A) to the corresponding figure for synonymous substitutions (K S). A ratio (K A/K S) greater than unity is taken as evidence for positive selection. This, however, need not necessarily be the case. Notably, there is one instance of a high intragenic K A/K S peak, revealed by sliding window analysis and observed in two pairwise comparisons, better accounted for by localised purifying selection on synonymous mutations that affect splicing. Is this example exceptional? To address this we isolate intragenic domains with K A/K S > 1 from more than 1000 long mouse-rat orthologues. Approximately one K A/K S > 1 peak is found per 12–15 kb of coding sequence. Surprisingly, low synonymous substitution rates underpin more incidences than do high nonsynonymous rates. Several reasons, however, prevent us from supposing that the low synonymous rates reflect purifying selection on synonymous mutations. First, for many peaks, the null that the peak is no higher than expected given the underlying rates of evolution, cannot be rejected. Second, of 18 statistically significant incidences with unusually low K S values, only 3 are repeatable across independent comparisons. At least two of these are within alternatively spliced exons. We conclude that repeatable statistically significant intragenic domains of low intragenic K S are rare. As so few K A/K S peaks reflect increased rates of protein evolution and so few hold statistical support, we additionally conclude that sliding window analysis to infer domains of positive selection is highly error-prone.  相似文献   

17.
Cête d׳Ivoire continues to have the highest HIV-1 prevalence rate in West Africa, although the infection number is in constant decline. The external envelope protein of the viruses is a likely site of selection, and responsible for receptor binding and entry into host cells, and therefore constitutes an ideal region with which to investigate the evolutionary processes acting on HIV-1. In this study, we analyse 189 envelope glycoprotein V3 loop region sequences of viruse isolates from 1995 to 2009, from HIV-1 untreated patients living in Cête d׳Ivoire, to decipher the temporal relationship between disease diversity, divergence and selection. Our analyses show that the nonsynonymous and synonymous ratio (dN/dS) was lower than 1 for viral populations analysed within 15 years, which showed the sequences did not undergo adequate immune pressure. The phylogenetic tree of the sequences analysed demonstrated distinctly long internal branches and short external branches, suggesting that only a small number of viruses infected the new host cell at each transmission. In addition to identifying sites under purifying selection, we also identified neutral sites that can cause false positive inference of selection. These sites presented form a resource for future studies of selection pressures acting on HIV-1 enν gene in Cête d׳Ivoire and other West African countries.  相似文献   

18.
Both effective population size and life history may influence the efficacy of purifying selection, but it remains unclear if the environment affects the accumulation of weakly deleterious nonsynonymous polymorphisms. We hypothesize that the reduced energetic cost of osmoregulation in brackish water habitat may cause relaxation of selective constraints at mitochondrial oxidative phosphorylation (OXPHOS) genes. To test this hypothesis, we analyzed 57 complete mitochondrial genomes of Pungitius pungitius collected from brackish and freshwater habitats. Based on inter‐ and intraspecific comparisons, we estimated that 84% and 68% of the nonsynonymous polymorphisms in the freshwater and brackish water populations, respectively, are weakly or moderately deleterious. Using in silico prediction tools (MutPred, SNAP2), we subsequently identified nonsynonymous polymorphisms with potentially harmful effect. Both prediction methods indicated that the functional effects of the fixed nonsynonymous substitutions between nine‐ and three‐spined stickleback were weaker than for polymorphisms within species, indicating that harmful nonsynonymous polymorphisms within populations rarely become fixed between species. No significant differences in mean estimated functional effects were identified between freshwater and brackish water nine‐spined stickleback to support the hypothesis that reduced osmoregulatory energy demand in the brackish water environment reduces the strength of purifying selection at OXPHOS genes. Instead, elevated frequency of nonsynonymous polymorphisms in the freshwater environment (Pn/Ps = 0.549 vs. 0.283; Fisher's exact test p = .032) suggested that purifying selection is less efficient in small freshwater populations. This study shows the utility of in silico functional prediction tools in population genetic and evolutionary research in a nonmammalian vertebrate and demonstrates that mitochondrial energy production genes represent a promising system to characterize the demographic, life history and potential habitat‐dependent effects of segregating amino acid variants.  相似文献   

19.
Bartolomé C  Maside X  Yi S  Grant AL  Charlesworth B 《Genetics》2005,169(3):1495-1507
We have investigated patterns of within-species polymorphism and between-species divergence for synonymous and nonsynonymous variants at a set of autosomal and X-linked loci of Drosophila miranda. D. pseudoobscura and D. affinis were used for the between-species comparisons. The results suggest the action of purifying selection on nonsynonymous, polymorphic variants. Among synonymous polymorphisms, there is a significant excess of synonymous mutations from preferred to unpreferred codons and of GC to AT mutations. There was no excess of GC to AT mutations among polymorphisms at noncoding sites. This suggests that selection is acting to maintain the use of preferred codons. Indirect evidence suggests that biased gene conversion in favor of GC base pairs may also be operating. The joint intensity of selection and biased gene conversion, in terms of the product of effective population size and the sum of the selection and conversion coefficients, was estimated to be approximately 0.65.  相似文献   

20.
The renin angiotensin system (RAS) is involved in blood pressure control and water/sodium metabolism. The genes encoding the proteins of this system are candidate genes for essential hypertension. The RAS involves four main molecules: angiotensinogen, renin, angiotensin I-converting enzyme, and the angiotensin II type 1 receptor (encoded by the genes AGT, REN, DCP1, and AGTR1, respectively). We performed a molecular screening over 17,037 bp of the coding and 5' and 3' untranslated regions of these genes, from three to six common chimpanzees. We identified 44 single-nucleotide polymorphisms (SNPs) in chimpanzee samples, including 18 coding-region SNPs, 5 of which led to an amino acid replacement. We observed common and different features at various sites (synonymous, nonsynonymous, and noncoding) within and between the four chimpanzee genes: (1) the nucleotide diversity at noncoding sites was similar; (2) the nucleotide diversity at nonsynonymous sites was low, probably reflecting purifying selection, except for the AGT gene; (3) the nucleotide diversity at synonymous sites, which was dependent on the G+C content at the third position of the codon, was high, except for the AGTR1 gene. Comparison of the chimpanzee SNPs with those previously reported for humans identified 119 sites with fixed differences (including 62 coding sites, 17 of which resulted in amino acid differences between the species). Analysis of polymorphism within species and divergence between species shed light on the evolutionary constraints on these genes. In particular, comparison of the pattern of mutation at polymorphic and fixed sites between humans and chimpanzees suggested that the high G+C content of the DCP1 gene was maintained by positive selection at its silent sites. Finally, we propose 68 ancestral alleles for the human RAS genes and discuss the implications for their use in future hypertension-susceptibility association studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号