首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 15 毫秒
1.
Gene associated with retinoid-IFN-induced mortality 19 (GRIM-19), as a novel IFN-β/RA-inducible gene product, was identified as a potential tumor suppressor associated with growth inhibition and cell apoptosis. Recently, it has been reported that the apoptotic effects and apoptosis-related gene induction of GRIM-19 can be attenuated by GW112, indicating that GRIM-19 and GW112 are involved in a common signal transduction pathway. To investigate the signaling mechanisms that link GRIM-19 to GW112 and their functional role in tumor cell invasion and metastasis, we utilized adenovirus-mediated overexpression of GRIM-19 in the gastric cancer SGC-7901 cell line. We observed that enhanced expression of GRIM-19 not only downregulated GW112 but also decreased NF-кB binding activity. As a result, we found that tumor cell adhesion, migration, invasion and liver metastasis were inhibited. Additionally, upregulation of GRIM-19 also suppressed secretion of urokinase-type plasminogen activator (u-PA), matrix metalloproteinase (MMP)-2, 9 and vascular endothelial growth factor (VEGF). These results indicate that GRIM-19 acts as an upstream regulator of GW112 to block NF-кB binding activity, thereby inhibiting gastric cancer cell migration, invasion and metastasis. We conclude that adenoviral transfer of the GRIM-19 gene may be an efficacious approach to controlling the invasion and metastasis of human gastric cancer.  相似文献   

2.
We previously reported that IRF-9/STAT2 functional interaction could drive the expression of retinoic acid-induced gene G (RIG-G), independently of STAT1 and the classical JAK–STAT pathway, providing a novel alternative pathway for interferons (IFN) to mediate their multiple biological properties. In addition, we also found that IRF-1 could regulate RIG-G induction as well as the expression of IRF-9 and STAT2 in some cases. But the mechanisms by which IRF-1 exerted its action remained to be elucidated. Here, we showed that STAT1 could significantly enhance the effects of the IRF-9/STAT2 complex or IRF-1 on RIG-G induction through an activated JAK–STAT pathway, though it was not essential for RIG-G expression. In STAT1-deficient U3A cells, IRF-1 could induce RIG-G expression via the IFN-stimulated response elements in the RIG-G gene promoter, but it failed to upregulate IRF-9 and STAT2 unless the U3A cells were reconstituted by exogenous STAT1. In STAT1-expressing cells, IRF-1 indirectly activated RIG-G expression through an IRF-9/STAT2-dependent manner. Taken together, we concluded that the expression of RIG-G was independent on the classical JAK–STAT pathway, but could be greatly increased by it. This work will be of great benefit to us for a better understanding of the mechanisms on RIG-G gene expression regulation.  相似文献   

3.
4.
5.
The purine-derived analogs, roscovitine and purvalanol are selective synthetic inhibitors of cyclin-dependent kinases (CDKs) induced cell cycle arrest and lead to apoptotic cell death in various cancer cells. Although a number of studies investigated the molecular mechanism of each CDK inhibitor on apoptotic cell death mechanism with their therapeutic potential, their regulatory role on autophagy is not clarified yet. In this paper, our aim was to investigate molecular mechanism of CDK inhibitors on autophagy and apoptosis in wild type (wt) and Bax deficient HCT 116 cells. Exposure of HCT 116 wt and Bax−/− cells to roscovitine or purvalanol for 24 h decreased cell viability in dose-dependent manner. However, Bax deficient HCT 116 cells were found more resistant against purvalanol treatment compared to wt cells. We also established that both CDK inhibitors induced apoptosis through activating mitochondria-mediated pathway in caspase-dependent manner regardless of Bax expression in HCT 116 colon cancer cells. Concomitantly, we determined that purvalanol was also effective on autophagy in HCT 116 colon cancer cells. Inhibition of autophagy by 3-MA treatment enhanced the purvalanol induced apoptotic cell death in HCT 116 Bax−/− cells. Our results revealed that mechanistic action of each CDK inhibitor on cell death mechanism differs. While purvalanol treatment activated apoptosis and autophagy in HCT 116 cells, roscovitine was only effective on caspase-dependent apoptotic pathway. Another important difference between two CDK inhibitors, although roscovitine treatment overcame Bax-mediated drug resistance in HCT 116 cells, purvalanol did not exert same effect.  相似文献   

6.
7.
Tumor-associated trypsin-2 and matrix metalloprotease-9 (MMP-9) are associated with cancer, particularly with invasive squamous cell carcinomas. They require activation for catalytical competence via proteolytic cascades. One cascade is formed by enterokinase, trypsin-2 and MMP-9; enterokinase activates trypsinogen-2 to trypsin-2, which is an efficient proMMP-9 activator. We describe here that oral squamous cell carcinomas express all members of this cascade: MMP-9, trypsin-2 and enterokinase. The expression of enterokinase in a carcinoma cell line not derived from the duodenum was shown here for the first time. Enterokinase directly cleaved proMMP-9 at the Lys65-Ser66 site, but failed to activate it in vitro. We demonstrated by confocal microscopy that MMP-9 and trypsin-2 co-localized in intracellular vesicles of the carcinoma cells. This co-localization of trypsin-2 and MMP-9 resulted in intracellular proMMP-9 processing that represented fully or partially activated MMP-9. However, although both proteases were present also in various bone tumor tissues, MMP-9 and trypsin-2 never co-localized at the cellular level in these tissues. This suggests that the intracellular vesicular co-localization, storage and possible activation of these proteases may be a unique feature for aggressive epithelial tumors, such as squamous cell carcinomas, but not for tumors of mesenchymal origin.  相似文献   

8.
9.
RuvB family of protein contains two similar kinds of proteins i.e. RuvB1 and RuvB2 from yeast to human. These proteins belong to the AAA + class of proteins and are critical components of several multiprotein complexes involved in diverse cellular activities. There are two RuvB proteins annotated in the Plasmodium database but the identification of the third protein recently by our lab has raised the question why Plasmodium falciparum contains three RuvB proteins instead of two. Hence the biochemical characterizations of these proteins have become essential to understand the role of these proteins in the malaria parasite. Recently we have reported the characterization of the recombinant PfRuvB3, which contains ATPase activity but lacks DNA helicase activity. In the present study we report the phylogenetic analysis and detailed biochemical characterization of one of the other RuvB homologue RuvB1 from P. falciparum. PfRuvB1 shows considerable homology with human as well as yeast RuvB1 and contains Walker motif A and Walker motif B. The activity analysis of this protein revealed that PfRuvB1 is an ATPase and this activity increased significantly in the presence of ss-DNA. PfRuvB1 also contains DNA helicase activity and translocates preferentially in 5′ to 3′ direction. In vivo investigation of PfRuvB1 revealed that it is constitutively expressed during all the stages of intraerythrocytic cycle of P. falciparum and localizes mainly to the nucleus. These studies will make important contribution in understanding the role of RuvB protein in P. falciparum.  相似文献   

10.
11.
Dbn1 is a newly discovered gene in the drebrin gene family of mice. Previous studies have reported that Dbn1 is specifically expressed in the mouse brain suggesting its potential role in brain development. However, a detailed analysis of Dbn1 expression during mouse brain development has not been demonstrated. Here, we describe the expression pattern of Dbn1 and the coexpression of Dbn1 and actin during the development of the mouse brain from embryonic day 14 (E14) to adulthood and during the differentiation of neural stem cells (NSCs), as determined using immunohistochemistry, double-labeling immunofluorescence, and quantitative real-time polymerase chain reaction. During mouse brain development, Dbn1 expression level was high at E14, attenuated postnatally, reached its highest point at postnatal day 7 (P7), and showed a very low level at adulthood. Imaging data showed that Dbn1 was mainly expressed in the hippocampus, ventricular zone, and cortex, where NSCs are densely distributed, and that the intracellular distribution of Dbn1 was predominantly located in the cytoplasm edges and neurites. Moreover, the signal for colocalization of Dbn1 with actin was intense at E14, P0, and P7, but it was weak at adulthood. During NSC differentiation, Dbn1 mRNA expression increased after the onset of differentiation and reached its highest point at 3 days, followed by a decrease in expression. The imaging data showed that Dbn1 was increasingly expressed in the extending neurites in accordance with the cell morphological changes that occur during differentiation. Furthermore, obvious colocalization signals of Dbn1 with actin were found in the neurites and dendritic spines. Collectively, these results suggest that Dbn1 may play a key role in mouse brain development and may regulate NSC differentiation by filamentous actin.  相似文献   

12.

Background

Myeloperoxidase (MPO) is an abundant hemoprotein expressed by neutrophil granulocytes that is recognized to play an important role in the development of vascular diseases. Upon degranulation from circulating neutrophil granulocytes, MPO binds to the surface of endothelial cells in an electrostatic-dependent manner and undergoes transcytotic migration to the underlying extracellular matrix (ECM). However, the mechanisms governing the binding of MPO to subendothelial ECM proteins, and whether this binding modulates its enzymatic functions are not well understood.

Methods

We investigated MPO binding to ECM derived from aortic endothelial cells, aortic smooth muscle cells, and fibroblasts, and to purified ECM proteins, and the modulation of these associations by glycosaminoglycans. The oxidizing and chlorinating potential of MPO upon binding to ECM proteins was tested.

Results

MPO binds to the ECM proteins collagen IV and fibronectin, and this association is enhanced by the pre-incubation of these proteins with glycosaminoglycans. Correspondingly, an excess of glycosaminoglycans in solution during incubation inhibits the binding of MPO to collagen IV and fibronectin. These observations were confirmed with cell-derived ECM. The oxidizing and chlorinating potential of MPO was preserved upon binding to collagen IV and fibronectin; even the potentiation of MPO activity in the presence of collagen IV and fibronectin was observed.

Conclusions

Collectively, the data reveal that MPO binds to ECM proteins on the basis of electrostatic interactions, and MPO chlorinating and oxidizing activity is potentiated upon association with these proteins.

General significance

Our findings provide new insights into the molecular mechanisms underlying the interaction of MPO with ECM proteins.  相似文献   

13.
To explore Lgr5 as the possible stem cell marker in human gastric tissue, 259 normal gastric tissues and dissected gastric adenocarcinoma were analyzed by immunohistochemistry, immunofluorescence double staining and qRT-PCR. The results demonstrated that Lgr5 was expressed in the bottom of the normal gastric gland units, and showed a differential expression in gastric adenocarcinoma with varying differentiation. Lgr5 and Bmi1 were co-expressed within the same cells of gastric glands. CD26 +, CD44 +, ALDH1 + and CD133 + cells co-existed with Lgr5 + cells in the stem cell zone of adjacent normal gastric mucosa, and they were detectable in gastric adenocarcinoma but behaved differently. We concluded that Lgr5 may be the adult stem cell marker in human gastric epithelium; Lgr5 and Bmi1 may belong to the same stem cell population; Lgr5, CD26, CD44, ALDH1, and CD133 may be functionally-associated.  相似文献   

14.
15.
Prostate cancer (CaP) is the second leading malignancy in men. The role of epithelial cell adhesion molecule (EpCAM), also known as CD326, in CaP progression and therapeutic resistance is still uncertain. Here, we aimed to investigate the roles of EpCAM in CaP metastasis and chemo/radioresistance. Expression of EpCAM in CaP cell lines and human CaP tissues was assessed using immunofluorescence and immunohistochemistry, respectively. EpCAM was knocked down (KD) in PC-3, DU145 and LNCaP-C4-2B cells using small interfering RNA (siRNA), and KD results were confirmed by confocal microscope, Western blotting and quantitative real time polymerase chain reaction (qRT-PCR). Cell growth was evaluated by proliferation and colony formation assays. The invasive potential was assessed using a matrigel chamber assay. Tumorigenesis potential was measured by a sphere formation assay. Chemo-/radiosensitivity were measured using a colony formation assay. Over-expression of EpCAM was found in primary CaP tissues and lymph node metastases including cancer cells and surrounding stromal cells. KD of EpCAM suppressed CaP proliferation and invasive ability, reduced sphere formation, enhanced chemo-/radiosensitivity, and down-regulated E-cadherin, p-Akt, p-mTOR, p-4EBP1 and p-S6K expression in CaP cells. Our findings suggest that EpCAM plays an important role in CaP proliferation, invasion, metastasis and chemo-/radioresistance associated with the activation of the PI3K/Akt/mTOR signaling pathway and is a novel therapeutic target to sensitize CaP cells to chemo-/radiotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号