首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Primary hypertrophic osteoarthropathy (PHO) is a rare monogenetic disease that closely mimics hypertrophic osteoarthropathy secondary to pulmonary or other pathology. The study of PHO provides an opportunity to understand both the pathogenesis of hypertrophic osteoarthropathy and the functions of the underlying genes. PHO is characterized by digital clubbing, periostosis and pachydermia. Two genes are known to be related to PHO: SLCO2A1 and HPGD. Here, we identified a recurrent heterozygous guanine-to-adenine transition at the invariant + 1 position of the donor site of intron 7 (c.940 + 1G > A) and a novel heterozygous missense mutation p.Asn534Lys (c.1602C > A) in exon 11 of SLCO2A1 in a Chinese young man with PHO. Identification of a novel genotype in PHO will provide clues to the phenotype–genotype relations and may assist not only in the clinical diagnosis of PHO but also in the interpretation of genetic information used for prenatal diagnosis and genetic counseling.  相似文献   

3.
4.
Hyperimmunoglobulinemia D and periodic fever syndrome (HIDS; MIM# 260920) is a rare recessively-inherited autoinflammatory condition caused by mutations in the MVK gene, which encodes for mevalonate kinase, an essential enzyme in the isoprenoid pathway. HIDS is clinically characterized by recurrent episodes of fever and inflammation. Here we report on the case of a 2 year-old Portuguese boy with recurrent episodes of fever, malaise, massive cervical lymphadenopathy and hepatosplenomegaly since the age of 12 months. Rash, arthralgia, abdominal pain and diarrhea were also seen occasionally. During attacks a vigorous acute-phase response was detected, including elevated erythrocyte sedimentation rate, C-reactive protein, serum amyloid A and leukocytosis. Clinical and laboratory improvement was seen between attacks. Despite normal serum IgD level, HIDS was clinically suspected. Mutational MVK analysis revealed the homozygous genotype with the novel p.Arg277Gly (p.R277G) mutation, while the healthy non-consanguineous parents were heterozygous. Short nonsteroidal anti-inflammatory drugs and corticosteroid courses were given during attacks with poor benefits, whereas anakinra showed positive responses only at high doses. The p.R277G mutation here described is a novel missense MVK mutation, and it has been detected in this case with a severe HIDS phenotype. Further studies are needed to evaluate a co-relation genotype, enzyme activity and phenotype, and to define the best therapeutic strategies.  相似文献   

5.
6.
XPF/ERCC1 endonuclease is required for DNA lesion repair. To assess effects of a C2169A nonsense mutation in XPF at position 2169 in gastric cancer tissues and cell lines, genomic DNA was extracted from blood samples of 488 cancer patients and 64 gastric tumors. The mutation was mapped using a TaqMan MGB probe. In addition, gastric cancer cell lines were transfected with mutated XPF to explore XPF/ERCC1 interaction, XPF degradation, and DNA repair by a comet assay. The C2169A mutation was not detected in 488 samples of blood genomic DNA, yet was found in 32 of 64 gastric cancer tissue samples (50.0%), resulting in a 194C-terminal amino acid loss in XPF protein and lower expression. Laser micro-dissection confirmed that this point mutation was not present in surrounding normal tissues from the same patients. The truncated form of XPF (tXPF) impaired interaction with ERCC1, was rapidly degraded via ubiquitination, and resulted in reduced DNA repair. In gastric cancers, the mutation was monoallelic, indicating that XPF is a haplo-insufficient DNA repair gene. As the C2169A mutation is closely associated with gastric carcinogenesis in the Chinese population, our findings shine light on it as a therapeutic target for early diagnosis and treatment of gastric cancer.  相似文献   

7.

Background

Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy syndrome (APECED) is an autosomal recessive disease due to mutations of the autoimmune regulator (AIRE) gene. Typical manifestations include candidiasis, Addison's disease, and hypoparathyroidism. Type 1 diabetes, alopecia, vitiligo, ectodermal dystrophy, celiac disease and other intestinal dysfunctions, chronic atrophic gastritis, chronic active hepatitis, autoimmune thyroid disorders, pernicious anemia and premature ovarian failure are other rare associated diseases although other conditions have been associated with APECED.

Case presentation

What follows is the clinical, endocrinological and molecular data of a female APECED patient coming from Lithuania. The patient was affected by chronic mucocutaneous candidiasis, hypoparathyroidism and pre-clinical Addison's disease. Using direct sequencing of all the 14 exons of the AIRE gene in the patient's DNA, we identified in exon 6 the known mutation c.769 C>T (p.Arg257X) in compound heterozygosity with the newly discovered mutation c.1214delC (p.Pro405fs) in exon 10. The novel mutation results in a frameshift that is predicted to alter the sequence of the protein starting from amino acid 405 as well as to cause its premature truncation, therefore a non-functional Aire protein.

Conclusions

A novel mutation has been described in a patient with APECED with classical clinical components, found in compound heterozygosity with the c.769 C>T variation. Expanded epidemiological investigations based on AIRE gene sequencing are necessary to verify the relevancy of the novel mutation to APECED etiopathogenesis in the Lithuanian population and to prove its diagnostic efficacy in association with clinical and immunological findings.  相似文献   

8.
Primary hypertrophic osteoarthropathy (PHO) is a rare monogenetic disease characterized by digital clubbing, periostosis and pachydermia. Mutations in the 15-hydroxy-prostaglandin dehydrogenase (HPGD) gene and solute carrier organic anion transporter family member 2A1 (SLCO2A1) gene have been shown to be associated with PHO. Here, we described clinical characteristics in a Chinese patient with PHO, and identified two novel mutations in SLCO2A1: a heterozygous guanine-to-thymidine transition at the invariant − 1 position of the acceptor site of intron 2 (c.235-1G > T) and a heterozygous missense mutation p.Pro219Leu (c.656C > T) in exon 5.  相似文献   

9.
SRY (sex-determining region Y) gene, MIM 480000, NM_005634) is crucial for sex differentiation which encodes the protein responsible for initiating testis differentiation. SRY mutations are associated with the presence of XY gonadal dysgenesis symptoms.  相似文献   

10.
11.
Progranulin is the precursor of granulins, and its down-regulation leads to neurodegeneration. Recent studies have indicated an association of progranulin polymorphism rs5848 with Alzheimer's disease (AD) risk, but the results remain controversial. To verify the association between rs5848 and AD risk, we retrieved the published literature from PubMed and other databases, and performed a meta-analysis by pooling all five studies containing 2502 AD cases and 2162 controls. The results showed that rs5848 is associated with increased risk of AD in homozygous (TT vs. CC: OR, 1.36; 95% CI, 1.11–1.66; P = 0.003) and recessive models (TT vs. CC + CT: OR, 1.31; 95% CI, 1.08–1.58; P = 0.006). This association was remained in Caucasian (2227 cases and 1902 controls). Our data indicate that TT allele of rs5848 is associated with increased risk of AD, suggesting that genetic variant of progranulin gene may play an important role in AD development.  相似文献   

12.
Pyridoxine-dependent epilepsy (PDE) is a rare autosomal recessive disorder characterized by seizures and therapeutic response to pharmacological dose of pyridoxine. Mutations in the ALDH7A1 gene, encoding α-aminoadipic semialdehyde (α-AASA) dehydrogenase (antiquitin), have been reported to cause PDE in most patients. In this study molecular analysis of seven PDE Tunisian patients revealed a common missense c.1364T > C mutation in the ALDH7A1 gene. The identification of a cluster of PDE pedigrees carrying the c.1364T > C mutation in a specific area raises the question of the origin of this mutation from a common ancestor. We carried out a genotype-based analysis by way of genotyping a new generated microsatellite marker within the ALDH7A1 gene. Genotype reconstruction of all affected pedigree members indicate that all c.1364T > C mutation carriers harbored the same allele, indicating a common ancestor. The finding of a founder effect in a rare disease is essential for the genetic diagnosis and the genetic counseling of affected PDE pedigrees in Tunisia.  相似文献   

13.
Type II citrullinaemia, also known as citrin deficiency, is an autosomal recessive metabolic disorder, which is caused by pathogenic mutations in the SLC25A13 gene on chromosome 7q21.3. One of the clinical manifestations of type II citrullinaemia is neonatal intrahepatic cholestatic hepatitis caused by citrin deficiency (NICCD, OMIM# 605814). In this study, a 5-month-old female Chinese neonate diagnosed with type II citrullinaemia was examined. The diagnosis was based on biochemical and clinical findings, including organic acid profiling using a gas chromatography mass spectrometry (GC/MS), and the patient's parents were unaffected. Approximately 14 kb of the exon sequences of the SLC25A13 and two relative genes (ASS1 and FAH) from the proband and 100 case-unrelated controls were captured by array-based capture method followed by high-throughput next-generation sequencing. Two single-nucleotide mutations were detected in the proband, including the previous reported c.1177+1G>A mutation and a novel c.754G>A mutation in the SLC25A13 gene. Sanger sequence results showed that the patient was a compound heterozygote for the two mutations. The novel mutation (c.754G>A), which is predicted to affect the normal structure and function of citrin, is a candidate pathogenic mutation. Target sequence capture combined with high-throughput next-generation sequencing technologies is proven to be an effective method for molecular genetic testing of type II citrullinaemia.  相似文献   

14.
15.

Background

Mucolipidosis type III gamma (MLIII gamma) is an autosomal recessive disease caused by a mutation in the GNPTG gene, which encodes the γ subunit of the N-acetylglucosamine-1-phosphotransferase (GlcNAc-1-phosphotransferase). This protein plays a key role in the transport of lysosomal hydrolases to the lysosome.

Methods

Three Chinese children with typical skeletal abnormalities of MLIII were identified, who were from unrelated consanguineous families. After obtaining informed consent, genomic DNA was isolated from the patients and their parents. Direct sequencing of the GNPTG and GNPTAB genes was performed using standard PCR reactions.

Results

The three probands showed clinical features typical of MLIII gamma, such as joint stiffness and vertebral scoliosis without coarsened facial features. Mutation analysis of the GNPTG gene showed that three novel mutations were identified, two in exon seven [c.425G>A (p.Cys142Val)] and [c.515dupC (p.His172Profs27X)], and one in exon eight [c.609+1G>C]. Their parents were determined to be heterozygous carriers when compared to the reference sequence in GenBank on NCBI.

Conclusions

Mutation of the GNPTG gene is the cause of MLIII gamma in our patients. Our findings expand the mutation spectrum of the GNPTG gene and extend the knowledge of the phenotype–genotype correlation of the disease.  相似文献   

16.

Backgrounds and Aims

UDP-glucuronosyltransferase 1 A1 (UGT1A1) is an enzyme that transforms small lipophilic molecules into water-soluble and excretable metabolites. UGT1A1 polymorphisms contribute to hyperbilirubinemia. This study quantitatively associated UGT1A1 variants in patients with hyperbilirubinemia and healthy subjects.

Methods

A total of 104 individuals with hyperbilirubinemia and 105 healthy controls were enrolled for genotyping and DNA sequencing UGT1A1 sequence variants, including the Phenobarbital Response enhancer module (PBREM) region, the promoter region (TATA box), and the 5 exons for quantitative association with hyperbilirubinemia.

Results

Eleven UGT1A1 variants were revealed in the case and control subjects, four of which were novel coding variants. A variant of PBREM (UGT1A1*60) was found in 47.6% of the patients, a TA repeat motif in the 5-primer promoter region [A(TA)7TAA,UGT1A1*28] was found in 27.9% of the patients, and p.G71R (UGT1A1*6) was in 33.2% of the patients. For the healthy controls, the frequency of UGT1A1*60, UGT1A1*28 and UGT1A1*6 was 26.7%, 9.0% and 15.7%, respectively. Homozygous UGT1A1*28 and homozygous UGT1A1*6 were significantly associated with the risk of adult hyperbilirubinemia, with an odds ratio (OR) of 17.79 (95% CIs, 2.11–133.61) and 14.93 (95% CIs, 1.83–121.88), respectively. Quantitative analysis showed that sense mutation (including UGT1A1*6) and UGT1A1*28/*28, but not UGT1A1*60/*60 or UGT1A1*1/*28, was associated with increased serum total bilirubin (TB) levels. High linkage disequilibrium occurred between UGT1A1*60 and UGT1A1*28 (D′ = 0.964, r2 = 0.345).

Conclusions

This study identified four novel UGT1A1 coding variants, some of which were associated with increased serum TB levels. A quantitative approach to evaluate adult hyperbilirubinemia provides a more vigorous framework for better understanding of adult hyperbilirubinemia genetics.  相似文献   

17.
We report on a consanguineous Pakistani family with a severe congenital microcephaly syndrome resembling the Seckel syndrome and Jawad syndrome. The affected individuals in this family were born to consanguineous parents of whom the mother presented with mild intellectual disability (ID), epilepsy and diabetes mellitus. The two living affected brothers presented with microcephaly, white matter disease of the brain, hyponychia, dysmorphic facial features with synophrys, epilepsy, diabetes mellitus and ID. Genotyping with a 250K SNP array in both affected brothers revealed an 18 MB homozygous region on chromosome 18p11.21-q12.1 encompassing the SCKL2 locus of the Seckel and Jawad syndromes. Sequencing of the RBBP8 gene, underlying the Seckel and Jawad syndromes, identified the novel mutation c.919A > G, p.Arg307Gly, segregating in a recessive manner in the family. In addition, in the two affected brothers and their mother we have also found a heterozygous 607 kb deletion, encompassing exons 13–19 of NRXN1. Bidirectional sequencing of the coding exons of NRXN1 did not reveal any other mutation on the other allele. It thus appears that the phenotype of the mildly affected mother can be explained by the NRXN1 deletion, whereas the more severe and complex microcephalic phenotype of the two affected brothers is due to the simultaneous deletion in NRXN1 and the homozygous missense mutation affecting RBBP8.  相似文献   

18.
19.
Leigh syndrome (LS) is a progressive neurodegenerative disease caused by either mitochondrial or nuclear DNA mutations resulting in dysfunctional mitochondrial energy metabolism. Mutations in genes encoding for subunits of the respiratory chain or assembly factors of respiratory chain complexes are often documented in LS cases. Nicotinamide adenine dinucleotide (NADH):ubiquinone oxidoreductase (complex I) enzyme deficiencies account for a significant proportion of mitochondrial disorders, including LS. In an attempt to expand the repertoire of known mutations accounting for LS, we describe the clinical, radiological, biochemical and molecular data of six patients with LS found to have novel mutations in two complex I subunits (NDUFV1 and NDUFS2). Two siblings were homozygous for the previously undescribed R386C mutation in NDUFV1, one patient was a compound heterozygote for the R386C mutation in NDUFV1 and a frameshift mutation in the same gene, one patient was a compound heterozygote for the R88G and R199P mutations in NDUFV1, and two siblings were compound heterozygotes for an undescribed E104A mutation in NDUFS2. After the novel mutations were identified, we employed prediction models using protein conservation analysis (SIFT, PolyPhen and UCSC genome browser) to determine pathogenicity. The R386C, R88G, R199P, and E104A mutations were found to be likely pathogenic, and thus presumably account for the LS phenotype. This case series broadens our understanding of the etiology of LS by identifying new molecular defects that can result in complex I deficiency and may assist in targeted diagnostics and/or prenatal diagnosis of LS in the future.  相似文献   

20.

Background

Receptor for advanced glycation end-product (RAGE) gene polymorphism 2245G/A is associated with diabetic retinopathy (DR). However, the mechanism on how it affects the disease development is still unclear.

Aim

This study aims to investigate the relationship between 2245G/A RAGE gene polymorphism and selected pro-inflammatory, oxidative-glycation markers in DR patients.

Methods

A total of 371 unrelated type 2 diabetic patients [200 with retinopathy, 171 without retinopathy (DNR)] and 235 healthy subjects were recruited. Genotyping was performed by polymerase chain reaction-restriction fragment length polymorphism method followed by DNA sequencing. The nuclear and cytosolic extracts from peripheral blood mononuclear cells were used for nuclear factor kappa B (NF-κB) p65 and superoxide dismutase activity measurement respectively. Plasma was used for glutathione peroxidase activity, advanced oxidation protein product (AOPP), monocyte chemoattractant protein (MCP)-1, pentosidine and soluble RAGE (sRAGE) measurements.

Results

DR patients with 2245GA genotype had significantly elevated levels of activated NF-κB p65, plasma MCP-1, AOPP and pentosidine but lower level of sRAGE when compared to DR patients with wild-type 2245GG.

Conclusion

The RAGE gene polymorphism 2245G/A is associated with pro-inflammatory, oxidative-glycation markers and circulating sRAGE in DR patients. Patients with 2245GA RAGE genotype could aggravate DR possibly via NF-κB mediated inflammatory pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号