首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The accessory Nef protein of HIV and SIV is essential for viral pathogenesis, yet it is perplexing in its multitude of molecular functions. In this review we analyse the structure–function relationships of motifs recently proposed to play roles in aspects of Nef modification, signalling and trafficking, and thereby to impinge on the ability of the virus to survive in, and to manipulate, its cellular host. Based on the full-length structure assembly of HIV Nef, we correlate surface accessibility with secondary structure elements and sequence conservation. Motifs involved in Nef-mediated CD4 and MHC I downregulation are located in flexible regions of Nef, suggesting that the formation of the transient trafficking complexes involved in these processes depends on the recognition of primary sequences. In contrast, the interaction sites for signalling molecules that contain SH3 domains or the p21-activated kinases are associated with the well folded core domain, suggesting the recognition of highly structured protein surfaces.  相似文献   

3.
Since d-amino acids were identified in mammals, d-serine has been one of the most extensively studied “unnatural amino acids”. This brain-enriched transmitter-like molecule plays a pivotal role in the human central nervous system by modulating the activity of NMDA receptors. Physiological levels of d-serine are required for normal brain development and function; thus, any alterations in neuromodulator concentrations might result in NMDA receptor dysfunction, which is known to be involved in several pathological conditions, including neurodegeneration(s), epilepsy, schizophrenia, and bipolar disorder. In the brain, the concentration of d-serine stored in cells is defined by the activity of two enzymes: serine racemase (responsible for both the synthesis and degradation) and d-amino acid oxidase (which catalyzes d-serine degradation). Both enzymes emerged recently as new potential therapeutic targets for NMDA receptor-related diseases. In this review we have focused on human d-amino acid oxidase and provide an extensive overview of the biochemical and structural properties of this flavoprotein and their functional significance. Furthermore, we discuss the mechanisms involved in modulating enzyme activity and stability with the aim to substantiate the pivotal role of d-amino acid oxidase in brain d-serine metabolism in physiological and pathological conditions and to highlight its great significance for novel drug design/development.  相似文献   

4.
Gad-1 and Gad-2 are antimicrobial peptide (AMP) sequences encoded by paralogous genes. They are rich in histidine, which suggests that their activity might be pH-dependent. We examined their structure–function relationships with a view to learning how to improve AMP therapeutic ratios. Activity assays with Gram-negative bacteria and cancer cell lines demonstrate that Gad-2 is substantially more active at slightly acidic pH than it is at neutral pH. By contrast, the activity of Gad-1 at lower pH is similar to its activity at pH 7. Circular dichroism spectra indicate that the greater functional plasticity of Gad-2 correlates with a greater structural plasticity; Gad-2's percent helicity varies dramatically with altered pH and lipid environment. Interestingly, Gad-2's highest levels of helicity do not correspond to the conditions where it is most active. High resolution solution NMR structures were determined in SDS micelles at pH 5, conditions that induce an intermediate level of helicity in the peptides. Gad-1 is more helical than Gad-2, with both peptides exhibiting the greatest helical tendencies in their central region and lowest helicity in their N-termini. The high resolution structures suggest that maximum activity relies on the appropriate balance between an N-terminal region with mixed hydrophobic/hydrophilic structure features and an amphipathic central and C-terminal region. Taken together with previous studies, our results suggest that to improve the therapeutic ratio of AMPs, consideration should be given to including sequential histidine-pairs, keeping the overall charge of the peptide modest, and retaining a degree of structural plasticity and imperfect amphipathicity.  相似文献   

5.
Ecto-5’-nucleotidase: Structure function relationships   总被引:1,自引:0,他引:1  
Ecto-5'-nucleotidase (ecto-5'-NT) is attached via a GPI anchor to the extracellular membrane, where it hydrolyses AMP to adenosine and phosphate. Related 5'-nucleotidases exist in bacteria, where they are exported into the periplasmic space. X-ray structures of the 5'-nucleotidase from E. coli showed that the enzyme consists of two domains. The N-terminal domain coordinates two catalytic divalent metal ions, whereas the C-terminal domain provides the substrate specificity pocket for the nucleotides. Thus, the substrate binds at the interface of the two domains. Here, the currently available structural information on ecto-5'-NT is reviewed in relation to the catalytic properties and enzyme function.  相似文献   

6.
7.

Background

Chiral epoxides and diols are important synthons for manufacturing fine chemicals and pharmaceuticals. The epoxide hydrolases (EC 3.3.2.-) catalyze the hydrolytic ring opening of epoxides producing the corresponding vicinal diol. Several isoenzymes display catalytic properties that position them as promising biocatalytic tools for the generation of enantiopure epoxides and diols.

Scope of review

This review focuses on the present data on enzyme structure and function in connection to biocatalytic applications. Available data on biocatalysis employed for purposes of stereospecific ring opening, to produce chiral vicinal diols, and kinetic resolution regimes, to achieve enantiopure epoxides, are discussed and related to results gained from structure–activity studies on the enzyme catalysts. More recent examples of the concept of directed evolution of enzyme function are also presented.

Major conclusions

The present understanding of structure–activity relationships in epoxide hydrolases regarding chemical catalysis is strong. With the ongoing research, a more detailed view of the factors that influence substrate specificities and stereospecificities is expected to arise. The already present use of epoxide hydrolases in synthetic applications is expected to expand as new enzymes are being isolated and characterized. Refined methodologies for directed evolution of desired catalytic and physicochemical properties may further boost the development of novel and useful biocatalysts.

General significance

The catalytic power of enzymes provides new possibilities for efficient, specific and sustainable technologies to be developed for production of useful chemicals.  相似文献   

8.
FpvA is the primary outer membrane transporter required for iron acquisition via the siderophore pyoverdine (Pvd) in Pseudomonas aeruginosa. FpvA, like other ferrisiderophore transporters, consists of a membrane-spanning β-barrel occluded by a plug domain. The β-strands of the barrel are connected by large extracellular loops and periplasmic turns. Like some other TonB-dependent transporters, FpvA has a periplasmic domain involved in a signalling cascade that regulates expression of genes required for ferrisiderophore transport. Here, the structures of FpvA in different loading states are analysed in light of mutagenesis data. This analysis highlights the roles of different protein domains in Pvd-Fe uptake and the signalling cascade and reveals a strong correlation between Pvd-Fe transport and activation of the signalling cascade. It is likely that conclusions drawn for FpvA will be relevant to other TonB-dependent ferrisiderophore transport and signalling proteins.  相似文献   

9.
Tyrosinases are metalloenzymes belonging to the type-3 copper protein family which contain two copper ions in the active site. They are found in various prokaryotes as well as in plants, fungi, arthropods, and mammals and are responsible for pigmentation, wound healing, radiation protection, and primary immune response. Tyrosinases perform two sequential enzymatic reactions: hydroxylation of monophenols and oxidation of diphenols to form quinones which polymerize spontaneously to melanin. Two other members of this family are catechol oxidases, which are prevalent mainly in plants and perform only the second oxidation step, and hemocyanins, which lack enzymatic activity and are oxygen carriers. In the last decade, several structures of plant and bacterial tyrosinases were determined, some with substrates or inhibitors, highlighting features and residues which are important for copper uptake and catalysis. This review summarizes the updated information on structure–function correlations in tyrosinases along with comparison to other type-3 copper proteins.  相似文献   

10.
Cell wall mycolic acids (MA) from Mycobacterium tuberculosis (M.tb) are CD1b presented antigens that can be used to detect antibodies as surrogate markers of active TB, even in HIV coinfected patients. The use of the complex mixtures of natural MA is complicated by an apparent antibody cross-reactivity with cholesterol. Here firstly we report three recombinant monoclonal scFv antibody fragments in the chicken germ-line antibody repertoire, which demonstrate the possibilities for cross-reactivity: the first recognized both cholesterol and mycolic acids, the second mycolic acids but not cholesterol, and the third cholesterol but not mycolic acids. Secondly, MA structure is experimentally interrogated to try to understand the cross-reactivity. Unique synthetic mycolic acids representative of the three main functional classes show varying antigenicity against human TB patient sera, depending on the functional groups present and on their stereochemistry. Oxygenated (methoxy- and keto-) mycolic acid was found to be more antigenic than alpha-mycolic acids. Synthetic methoxy-mycolic acids were the most antigenic, one containing a trans-cyclopropane apparently being somewhat more antigenic than the natural mixture. Trans-cyclopropane-containing keto- and hydroxy-mycolic acids were also found to be the most antigenic among each of these classes. However, none of the individual synthetic mycolic acids significantly and reproducibly distinguished the pooled serum of TB positive patients from that of TB negative patients better than the natural mixture of MA. This argues against the potential to improve the specificity of serodiagnosis of TB with a defined single synthetic mycolic acid antigen from this set, although sensitivity may be facilitated by using a synthetic methoxy-mycolic acid.  相似文献   

11.
Iron uptake and release by ferritin molecules of different iron contents show similar profiles. These are discussed in relation to the structure of the ferritin molecule. Two models of iron uptake and release are considered. One involves iron oxidation–reduction sites on the protein. The other allows direct interaction of reagents with the iron-core crystallites. It is concluded that the second model accounts better for the experimental results presented now and in previous publications.  相似文献   

12.
This review highlights recent research on structure–function relationships in tendon and comments on the parallels between development and healing. The processes of tendon development and collagen fibrillogenesis are reviewed, but due to the abundance of information in this field, this work focuses primarily on characterizing the mechanical behavior of mature and developing tendon, and how the latter parallels healing tendon. The role that extracellular matrix components, mainly collagen, proteoglycans, and collagen cross-links, play in determining the mechanical behavior of tendon will be examined in this review. Specifically, collagen fiber re-alignment and collagen fibril uncrimping relate mechanical behavior to structural alterations during development and during healing. Finally, attention is paid to a number of recent efforts to augment injured tendon and how future efforts could focus on recreating the important structure–function relationships reviewed here.  相似文献   

13.
Diverse structural scaffolds have been described in peptides from sea anemones, with the ShKT domain being a common scaffold first identified in ShK toxin from Stichodactyla helianthus. ShK is a potent blocker of voltage-gated potassium channels (KV1.x), and an analog, ShK-186 (dalazatide), has completed Phase 1 clinical trials in plaque psoriasis. The ShKT domain has been found in numerous other species, but only a tiny fraction of ShKT domains has been characterized functionally. Despite adopting the canonical ShK fold, some ShKT peptides from sea anemones inhibit KV1.x, while others do not. Mutagenesis studies have shown that a Lys–Tyr (KY) dyad plays a key role in KV1.x blockade, although a cationic residue followed by a hydrophobic residue may also suffice. Nevertheless, ShKT peptides displaying an ShK-like fold and containing a KY dyad do not necessarily block potassium channels, so additional criteria are needed to determine whether new ShKT peptides might show activity against potassium channels. In this study, we used a combination of NMR and molecular dynamics (MD) simulations to assess the potential activity of a new ShKT peptide. We determined the structure of ShKT-Ts1, from the sea anemone Telmatactis stephensoni, examined its tissue localization, and investigated its activity against a range of ion channels. As ShKT-Ts1 showed no activity against KV1.x channels, we used MD simulations to investigate whether solvent exposure of the dyad residues may be informative in rationalizing and potentially predicting the ability of ShKT peptides to block KV1.x channels. We show that either a buried dyad that does not become exposed during MD simulations, or a partially exposed dyad that becomes buried during MD simulations, correlates with weak or absent activity against KV1.x channels. Therefore, structure determination coupled with MD simulations, may be used to predict whether new sequences belonging to the ShKT family may act as potassium channel blockers.  相似文献   

14.
Recent findings on the biochemical and molecular features of the following thermozymes are presented, based on their biotechnological use: α-amylase and amylopullulanase, used in starch processing; glucose isomerase, used in sweetener production; alcohol dehydrogenase, used in chemical synthesis; and alkaline phosphatase, used in diagnostics. The corresponding genes and recombinant proteins have been characterized in terms of sequence similarities, specific activities, thermophilicity, and unfolding kinetics. Site-directed and nested deletion mutagenesis were used to understand structure–function relationships. All these thermozymes display higher stability and activity than their counterparts currently used in the biotechnology industry. Received: January 22, 1998 / Accepted: February 16, 1998  相似文献   

15.
Molluscan troponin regulates muscle contraction through a novel Ca2+-dependent activating mechanism associated with Ca2+-binding to the C-terminal domain of troponin C. To elucidate the further details of this regulation, we performed limited chymotryptic digestion of the troponin complex from akazara scallop striated muscle. The results indicated that troponin T is very susceptible to the protease, compared to troponin C or troponin I. The cleavage occurred at the C-terminal extension, producing an N-terminal 33-kDa fragment and a C-terminal 6-kDa fragment. This extension is conserved in various invertebrate troponin T proteins, but not in vertebrate troponin T. A ternary complex composed of the 33-kDa fragment of troponin T, troponin I, and troponin C could be separated from the 6-kDa troponin T fragment by gel filtration. This complex did not show any Ca2+-dependent activation of the Mg-ATPase activity of rabbit-actomyosin–scallop-tropomyosin. In addition, the actin–tropomyosin-binding affinity of this complex was significantly decreased with increasing Ca2+ concentration. These results indicate that the C-terminal extension of molluscan troponin T plays a role in anchoring the troponin complex to actin–tropomyosin filaments and is essential for regulation.  相似文献   

16.
This article is part of a Special Issue “Estradiol and Cognition”.In estrogen-induced synaptic plasticity, a correlation of structure, function and behavior in the hippocampus has been widely established. 17ß-estradiol has been shown to increase dendritic spine density on hippocampal neurons and is accompanied by enhanced long-term potentiation and improved performance of animals in hippocampus-dependent memory tests. After inhibition of aromatase, the final enzyme of estradiol synthesis, with letrozole we consistently found a strong and significant impairment of long-term potentiation (LTP) in female mice as early as after six hours of treatment. LTP impairment was followed by loss of hippocampal spine synapses in the hippocampal CA1 area. Interestingly, these effects were not found in male animals. In the Morris water maze test, chronic administration of letrozole did not alter spatial learning and memory in either female or male mice. In humans, analogous effects of estradiol on hippocampal morphology and physiology were observed using neuroimaging techniques. However, similar to our findings in mice, an effect of estradiol on memory performance has not been consistently observed.  相似文献   

17.
Five wheat (Triticum aestivum L.) starches, from the varieties Sunco, Sunsoft, SM1118, and SM1028, with similar amylose content, and a waxy wheat were separated into large (A) and small (B) granules. The unfractionated starches, and isolated A and B granules, were characterized structurally and evaluated for their functional properties. The amylopectin chain length distribution revealed that A granules had a lower proportion of short chains with degree of polymerization (DP) 6-12 and a higher proportion of chains with DP 25-36 than B granules. X-ray diffraction (XRD) patterns showed predominantly A-type crystallinity for all of the starches. No differences in the crystallinity were found between unfractionated, A and B granules. Small-angle X-ray scattering (SAXS) patterns of the starches at 55% hydration showed that the lamellar repeat distance in A granules was larger than that of B granules for all the starches examined. However, the lamellar distances of both A and B granules from the waxy wheat were smaller than those of Sunco, Sunsoft, SM1118 and SM1028 starches. The swelling power of the B granules was greater than that of A granules from all five starches. The kinetics of digestion of A and B granules with α-amylase in vitro were complex, with B granules initially digested to a greater extent than A granules. After 4 h of incubation, A granules showed greater digestibility than B granules, except in the case of waxy starch where unfractionated and fractionated granules had similar in vitro digestibility. Correlations between structural and functional parameters were more significant for the isolated A and B granules than for the unfractionated starches. This study demonstrates that A and B granules differ in structure and functionality, and that some correlations between these properties could be masked in unfractionated starches with bimodal granule size distribution.  相似文献   

18.
We have previously shown that simple N-acyl or N-alkyl polyamines bind to and sequester Gram-negative bacterial lipopolysaccharide, affording protection against lethality in animal models of endotoxicosis. Several iterative design-and-test cycles of SAR studies, including high-throughput screens, had converged on compounds with polyamine scaffolds which have been investigated extensively with reference to the number, position, and length of acyl or alkyl appendages. However, the polyamine backbone itself had not been explored sufficiently, and it was not known if incremental variations on the polymethylene spacing would affect LPS-binding and neutralization properties. We have now systematically explored the relationship between variously elongated spermidine [NH2–(CH2)3–NH–(CH2)4–NH2] and norspermidine [NH2–(CH2)3–NH–(CH2)3–NH2] backbones, with the N-alkyl group being held constant at C16 in order to examine if changing the spacing between the inner secondary amines may yield additional SAR information. We find that the norspermine-type compounds consistently showed higher activity compared to corresponding spermine homologues.  相似文献   

19.
Site-specific biomechanical properties of the aortic valve play an important role in native valve function, and alterations in these properties may reflect mechanisms of degeneration and disease. Small animals such as targeted mutagenesis mice provide a powerful approach to model human valve disease pathogenesis; however, physical mechanical testing in small animals is limited by valve tissue size. Aortic valves are comprised of highly organized extracellular matrix compartmentalized in cusp and annulus regions, which have different functions. The objective of this study was to measure regional mechanical properties of mouse aortic valve tissue using a modified micropipette aspiration technique. Aortic valves were isolated from juvenile, adult and aged adult C57BL/6 wild type mice. Tissue tensile stiffness was determined for annulus and cusp regions using a half-space punch model. Stiffness for the annulus region was significantly higher compared to the cusp region at all stages. Further, aged adult valve tissue had decreased stiffness in both the cusp and annulus. Quantitative histochemical analysis revealed a collagen-rich annulus and a proteoglycan-rich cusp at all stages. In aged adult valves, there was proteoglycan infiltration of the annulus hinge, consistent with the observed mechanical differences over time. These findings indicate that valve tissue biomechanical properties vary in wild type mice in a region-specific and age-related manner. The micropipette aspiration technique provides a promising approach for studies of valve structure and function in small animal models, such as transgenic mouse models of valve disease.  相似文献   

20.
The toxicity of Gram-negative bacterial endotoxin (lipopolysaccharide, LPS) resides in its structurally highly conserved glycolipid component called lipid A. Our major goal has been to develop small-molecules that would sequester LPS by binding to the lipid A moiety, so that it could be useful for the prophylaxis or adjunctive therapy of Gram-negative sepsis. We had previously identified in rapid-throughput screens several guanylhydrazones as potent LPS binders. We were desirous of examining if the presence of the guanylhydrazone (rather than an amine) functionality would afford greater LPS sequestration potency. In evaluating a congeneric set of guanylhydrazone analogues, we find that C16 alkyl substitution is optimal in the N-alkylguanylhydrazone series; a homospermine analogue with the terminal amine N-alkylated with a C16 chain with the other terminus of the molecule bearing an unsubstituted guanylhydrazone moiety is marginally more active, suggesting very slight, if any, steric effects. Neither C16 analogue is significantly more active than the N-C16-alkyl or N-C16-acyl compounds that we had characterized earlier, indicating that basicity of the phosphate-recognizing cationic group, is not a determinant of LPS sequestration activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号