首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
We described a 38-year-old woman of rapidly progressive dementia with white matter encephalopathy and death. She had Addison's disease but the adrenal glands were hyperplastic. Brain magnetic resonance imaging revealed diffuse white matter lesion predominantly in the frontal lobe with band-like contrast enhancement. l-Methyl-11C-methionine positron emission tomography revealed accumulation of tracer in bilateral frontal lobes. Stereotactic biopsy demonstrated demyelination changes. A number of urinary organic acids were elevated. Adrenoleukodystrophy was diagnosed by elevated plasma very long chain fatty acid and ABCD1 gene mutation (C1544C/T). Adrenoleukodystrophy should be considered as a differential diagnosis in women with rapidly progressive white matter encephalopathy.  相似文献   

2.
Acute liver failure (ALF) is frequently complicated by the development of brain edema that can lead to intracranial hypertension and severe brain injury. Neuroimaging techniques allow a none-invasive assessment of brain tissue and cerebral hemodynamics by means of transcranial Doppler ultrasonography, magnetic resonance and nuclear imaging with radioligands. These methods have been very helpful to unravel the pathogenesis of this process and have been applied to patients and experimental models. They allow monitoring the outcome of patients with ALF and neurological manifestations. The increase in brain water can be detected by observing changes in brain volume and disturbances in diffusion weighted imaging. Neurometabolic changes are detected by magnetic resonance spectroscopy, which provides a pattern of abnormalities characterized by an increase in glutamine and a decrease in myo-inositol. Disturbances in cerebral blood flow are depicted by SPECT or PET and can be monitored and the bedside by assessing the characteristics of the waveform provided by transcranial Doppler ultrasonography. Neuroimaging methods, which are rapidly evolving, will undoubtedly lead to future diagnostic and therapeutic progress that could be very helpful for patients with ALF.  相似文献   

3.
Acute liver failure (ALF) is frequently complicated by the development of brain edema that can lead to intracranial hypertension and severe brain injury. Neuroimaging techniques allow a none-invasive assessment of brain tissue and cerebral hemodynamics by means of transcranial Doppler ultrasonography, magnetic resonance and nuclear imaging with radioligands. These methods have been very helpful to unravel the pathogenesis of this process and have been applied to patients and experimental models. They allow monitoring the outcome of patients with ALF and neurological manifestations. The increase in brain water can be detected by observing changes in brain volume and disturbances in diffusion weighted imaging. Neurometabolic changes are detected by magnetic resonance spectroscopy, which provides a pattern of abnormalities characterized by an increase in glutamine and a decrease in myo-inositol. Disturbances in cerebral blood flow are depicted by SPECT or PET and can be monitored and the bedside by assessing the characteristics of the waveform provided by transcranial Doppler ultrasonography. Neuroimaging methods, which are rapidly evolving, will undoubtedly lead to future diagnostic and therapeutic progress that could be very helpful for patients with ALF.  相似文献   

4.
The aim of present study was to quantitatively investigate the neurochemical profile of the frontal cortex region in a rat model of long-term alcohol consumption, by using in vivo proton magnetic resonance spectroscopy (1H-MRS) at 4.7 T and ex vivo1H high-resolution magic angle spinning (HR-MAS) technique at 11.7 T. Twenty male rats were divided into two groups and fed a liquid diet for 10 weeks. After 10 weeks, in vivo1H MRS spectra were acquired from the frontal cortex brain region. After in vivo1H MRS experiments, all animals were sacrificed and 20 frontal cortex tissue samples were harvested. All tissue examinations were performed with the 11.7 T HR-MAS spectrometer and high-resolution spectra were acquired. The in vivo and ex vivo spectra were quantified as absolute metabolite concentrations and normalized ratios of total signal-intensity (i.e., metabolitesNorm), respectively. The absolute quantifications of in vivo spectra showed significantly higher glycerophosphocholine plus phosphocholine (GPC + PCh) and lower myo-inositol (mIns) concentrations in ethanol-treated rats compared to controls. The quantifications of ex vivo spectra showed significantly higher PChNorm, ChoNorm and tChoNorm, and lower GPCNorm and mInsNorm ratio levels in ethanol-treated rats compared to controls. Our findings suggest that reduced mIns concentrations caused by the long-term alcohol consumption may lead to hypo-osmolarity syndrome and astrocyte hyponatremia. In addition, increased choline-containing compound concentrations may reflect an increased cell turnover rate of phosphatidylcholine and other phospholipids, indicating an adaptive mechanism. Therefore, these results might be utilized as key markers in chronic alcohol intoxication metabolism.  相似文献   

5.
Turner syndrome is a condition caused by numeric and structural abnormalities of the X chromosome, and is characterized by a series of clinical features, the most common being short stature and gonadal dysgenesis. An increased frequency of autoimmune diseases as well as an elevated incidence of autoantibodies has been observed in Turner patients.  相似文献   

6.
Increasing numbers of cancer patients survive and live longer than five years after therapy, but very often side effects of cancer treatment arise at same time. One of the side effects, chemotherapy-induced cognitive impairment (CICI), also called “chemobrain” or “chemofog” by patients, brings enormous challenges to cancer survivors following successful chemotherapeutic treatment. Decreased abilities of learning, memory, attention, executive function and processing speed in cancer survivors with CICI, are some of the challenges that greatly impair survivors' quality of life. The molecular mechanisms of CICI involve very complicated processes, which have been the subject of investigation over the past decades. Many mechanistic candidates have been studied including disruption of the blood-brain barrier (BBB), DNA damage, telomere shortening, oxidative stress and associated inflammatory response, gene polymorphism of neural repair, altered neurotransmission, and hormone changes. Oxidative stress is considered as a vital mechanism, since over 50% of FDA-approved anti-cancer drugs can generate reactive oxygen species (ROS) or reactive nitrogen species (RNS), which lead to neuronal death. In this review paper, we discuss these important candidate mechanisms, in particular oxidative stress and the cytokine, TNF-alpha and their potential roles in CICI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号