首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We describe a 7-year-old boy with a complex rearrangement involving the whole short arm of chromosome 9 defined by means of molecular cytogenetic techniques. The rearrangement is characterized by a 18.3 Mb terminal deletion associated with the inverted duplication of the adjacent 21,5 Mb region. The patient shows developmental delay, psychomotor retardation, hypotonia. Other typical features of 9p deletion (genital disorders, midface hypoplasia, long philtrum) and of the 9p duplication (brachycephaly, down slanting palpebral fissures and bulbous nasal tip) are present. Interestingly, he does not show trigonocephaly that is the most prominent dysmorphism associated with the deletion of the short arm of chromosome 9. Patient's phenotype and the underlying flanking opposite 9p imbalances are compared with that of reported patients and the proposed critical regions for 9p deletion and 9p duplication syndromes.  相似文献   

2.
The structural rearrangement in the short arm of a chromosome 8 in a clinically affected patient has been reinvestigated by FISH using whole chromosome painting and region specific YAC probes. An inverted duplication of the segment p22-->p11.2 and a deletion of the subtelomeric region were demonstrated. By this approach, a more detailed resolution of the duplication/deletion 8p was possible. With the application of molecular cytogenetic methods the existence of different duplication segments within the clinical entity of duplication/deficiency 8p can be shown.  相似文献   

3.
We report on a 29-year-old male patient with an inverted 7(q35-qter) duplication diagnosed by combining cytogenetic and FISH studies. Traditional G-banding detected an abnormally long chromosome 7 which was further demonstrated to be entirely of chromosome 7 origin by using fluorescent whole chromosome 7 painting. The presence within the additional segment of a signal for 7q36 region (Williams control probe) and the absence of signals for 7q33 (Y938G5 probe) and 7q34 (Y815G5 probe) regions indicated that the breakpoint for this rearrangement was distal to 7q34 and proximal to 7q36. A distal 7p22 deletion was confirmed by the absence of signal for the 7p subtelomeric probe. Apart from kyphosis, developmental/mental retardation and abnormal ears, the clinical features of the present patient, who is the oldest individual ever reported with this duplication/deletion, were not typical for partial 7q trisomy syndrome. A review of the cases reported with 7(q35-qter) duplication is made and shows important clinical variability but constantly normal pre- and postnatal growth, a feature which can therefore be confirmed as distinctive of distal 7q trisomy syndrome.  相似文献   

4.
Supernumerary marker chromosomes (SMC) are heterogeneous group of chromosomes which are reported in variable phenotypes. Approximately 70% originate from acrocentric chromosomes. Here we report a couple with recurrent miscarriages and a SMC originating from an acrocentric chromosome. The cytogenetic analysis of the husband revealed a karyotype of 47,XY+marker whereas the wife had a normal karyotype. Analysis of SMC with C-banding showed the presence of a big centromere in the center and silver staining showed prominent satellites on both sides of the marker. Apparently, microarray analysis revealed a 2.1 Mb duplication of 15q11.2 region but molecular cytogenetic analysis by fluorescence in situ hybridization (FISH) with whole chromosome paint (WCP) 15 showed that the SMC is not of chromosome 15 origin. Subsequently, FISH with centromere 22 identified the SMC to originate from chromosome 22 which was also confirmed by WCP 22. Additional dual FISH with centromere 22 and Acro-p-arm probes confirmed the centromere 22 and satellites on the SMC. Further fine mapping of the marker with Bacterial Artificial Chromosome (BAC) clones; two on chromosome 22 and four on chromosome 15 determined the marker to possess only centromere 22 sequences and that the duplication 15 exists directly on chromosome 15. In our study, we had identified and characterized a SMC showing inversion duplication 22(p11.1) combined with a direct tandem duplication of 15q11.2. The possible genotype–phenotype in relation with the two rearrangements is discussed.  相似文献   

5.
A 45,X male with Y-specific DNA translocated onto chromosome 15.   总被引:6,自引:1,他引:5       下载免费PDF全文
A 20-year-old male patient with chromosomal constitution 45,X, testes and normal external genitalia was examined. Neither mosaicism nor a structurally aberrant Y chromosome was observed when routine cytogenetic analysis was performed on both lymphocytes and skin fibroblasts. Y chromosome-specific single-copy and repeated DNA sequences were detected in the patient's genome by means of 11 different recombinant-DNA probes of known regional assignment on the human Y chromosome. Data indicated that the short arm, the centromere, and part of the long-arm euchromatin of the Y chromosome have been retained and that the patient lacks deletion intervals 6 and 7 of Yq. High-resolution analysis of prometaphase chromosomes revealed additional euchromatic material on the short arm of one of the patient's chromosomes 15. After in situ hybridization with the Y chromosome-specific probe pDP105, a significant grain accumulation was observed distal to 15p11.2, suggesting a Y/15 chromosomal translocation. We conclude that some 45,X males originate from Y-chromosome/autosome translocations following a break in the proximal long arm of the Y chromosome.  相似文献   

6.
A 10-year-old speechless, mentally deficient male, with low arylsulfatase A (ARSA) activity, and presumably, methachromatic leukodystrophy, underwent genetic evaluation. As the clinical picture was not compatible with this diagnosisan ARSA gene and chromosome analysis were performed, showing the presence of a pseudodeficiency ARSA allele and a de novo apparently balanced t(16;22)(p11.2;q13) translocation. A deletion on the long arm of chromosome 22 encompassing the ARSA gene, as shown by FISH and array-CGH, indicated a 22q13 deletion syndrome. This case illustrates the importance of detailed cytogenetic investigation in patients presenting low arylsulfatase A activity and atypical/unspecific clinical features.  相似文献   

7.
We describe a novel fragile site in a rearranged chromosome, associated with the presence of telomeric repeat sequences at the fusion point of a translocation between chromosomes 13 and Y. The case reported in this study shows a de novo (Y;13) translocation, which appears to represent fusion of an apparently intact chromosome Y with a chromosome 13 that has lost only part of its short arm. Ten percent of the cells show a normal karyotype without the (Y;13) translocation. Molecular cytogenetic studies of the derived Y;13 chromosome revealed three hybridization sites of the telomeric probes – one at each end and one at the breakpoint junction. A fragile site is also observed in the intrachromosomic telomeric region. This coincidence suggests that the telomere repeat sequences (TTAGGG)n, when present at an interstitial chromosomal location, can promote the formation of a novel fragile site. Received: 15 November 1995 / Revised: 6 March 1996  相似文献   

8.
Xq28 duplications encompassing the methyl CpG binding protein 2 (MECP2) in males exhibit a distinct phenotype, including developmental delay, facial dysmorphism, muscular hypotonia, intellectual disability, poor or absent speech, recurrent infections and early death. The vast majority of affected males inherit the MECP2 duplication from their usually asymptomatic carrier mothers. Only a few cases with Xq28 duplication originating from de novo unbalanced X/Y translocation have been reported and the paternal origin of the aberration has only been validated in three males in the related literature. Here we present a karyotypically normal male with features characteristic of the MECP2 duplication syndrome. The genome-wide SNP genotyping shows a de novo 2.26-Mb duplication from Xq28 to the terminus. The genotypes of the SNPs within the duplicated region indicated a paternal origin. Furthermore, the results of fluorescence in situ hybridization (FISH) indicated a novel Xq:Yp translocation, characterized as der(Y)t(Y;X)(p11.32;q28), which suggests an aberrant that occurred during spermatogenesis. The phenotype is compared to the previously reported cases with Xq28 duplication originated from an unbalanced X/Y translocation, and there was no specific part of the phenotype that could be contributed to the origin of parental imbalances. This report further highlights the capacity of high-molecular cytogenetic methods, such as SNP array and FISH, in the identification of submicroscopic rearrangement, structural configuration and parental origin of aberrant while in the evaluation of children with idiopathic developmental delay and intellectual disability.  相似文献   

9.
Complex chromosomal rearrangements are very rare chromosomal abnormalities. Individuals with a complex chromosomal rearrangement can be phenotypically normal or display a clinical abnormality. It is believed that these abnormalities are due to either microdeletions or microduplications at the translocation breakpoints or as a result of disruption of the genes located in the breakpoints. In this study we describe a 2-year-old child with mental retardation and developmental delay in whom a de novo apparently balanced exceptional complex chromosomal rearrangement was found through conventional cytogenetic analysis. Using both cytogenetic and FISH analysis, the patient's karyotype was found to be: 46,XY,der(5)t(5;7)(p15.1;7q34),t(5;8)(q13.1;8q24.1)dn. A large, clinically significant deletion which encompassed 887.69 kb was detected at the 5q12.1–5q12.3 (chr5:62.886.523–63.774.210) genomic region using array-CGH. This deleted region includes the HTR1A and RNF180 genes. This is the first report of an individual with an apparently balanced complex chromosomal rearrangement in conjunction with a microdeletion at 5q12.1–5q12.3 in which there are both mental-motor retardation and dysmorphia.  相似文献   

10.
Coexistence of inverted Y, chromosome 15p+ and abnormal phenotype.   总被引:3,自引:0,他引:3  
In this study, we report conventional and molecular cytogenetic studies in a patient with multiple anomalies who is a carrier of a pericentric inversion on chromosome Y and a chromosome 15p+. His parents were phenotypically normal. The father is a carrier of a pericentric inversion of chromosome Y, and the mother carries a large chromosome 15p+ variant. The inverted Y chromosome was demonstrated by GTG- and CBG-banding, and DAPI-staining. The presence of extra chromosomal material on the chromosome 15p, that was C-band and DAPI positive, was demonstrated by trypsin G-banding. This suggests that the extra chromosomal material contained repetitive DNA sequences. NOR-staining indicated the presence a nuclear organizer region at the junction of the chromosome 15p+ material. Fluorescence in situ hybridization (FISH), with chromosome X and Y painting probes, alpha- and classic-satellite probes specific for chromosome Y, alpha- and beta-satellite III probes for chromosome 15 were used to elucidate the nature of both the inverted Y chromosome and chromosome 15p+. The result with chromosome X and Y painting probes, alpha-satellite, classic-satellite, and DYS59 probes specific for chromosome Y revealed the rearrangement of the Y chromosome was an inv(Y)(p11.2q11.22 or q11.23). FISH with alpha-satellite and beta-satellite III probes for chromosome 15 demonstrated that the extra chromosomal material on the chromosome 15 probably represents beta-satellite III sequences. The possible roles of the simultaneous occurrence of an inverted Y and the amplified DNA sequence on chromosome 15p in the abnormal phenotype of the proband are discussed.  相似文献   

11.
Alagille syndrome is a clinically defined, dominantly inherited disorder affecting the liver, heart, face, eye, and vertebrae. Alagille syndrome has previously been localized to the short arm of chromosome 20, on the basis of reports of a small number of patients with chromosomal deletions of 20p. We undertook a cytogenetic study of patients with Alagille syndrome and identified a family in which a cytologically balanced translocation between chromosomes 2 and 20, 46,XX/XY, t(2;20)(q21.3;p12), is segregating concordantly with the disease. The breakpoint on chromosome 20p in this t(2;20) is consistent with the shortest region of overlap demonstrated in the reported deletion patients. This is the first report of a translocation associated with 20p and Alagille syndrome, and this rearrangement confirms the location of the Alagille disease gene at 20p12. We have established a somatic cell hybrid from a lymphoblastoid cell line from one of the affected individuals that contains the derivative chromosome 20 (20qter-->p12::2q21.3-->qter) but not the derivative chromosome 2, the normal chromosome 2, or the normal chromosome 20. Southern blot and PCR analysis of probes and sequences from 20p have been studied to define the location of the translocation breakpoint. Our results show that the breakpoint lies distal to D20S61 and D20S56 within band 20p12.  相似文献   

12.
A family with six alive patients with partial monosomy 5p and five with partial trisomy 5p due to a t(5;15)(p13.3;p12) translocation is reported. The translocation was present in four generations with eight balanced carriers. This is the first molecular-cytogenetic and clinical study with both syndromes present in the same family. Using fluorescence in situ hybridization (FISH) with bacterial artificial chromosome (BAC) probes, the breakpoint was mapped to 5p13.3, in the interval corresponding to the BAC clone RP11-1079N14, thereof resulting a 5pter-5p13.3 deletion or duplication of ~32 Mb. These chromosome imbalances can be considered pure, since the other imbalance produced involving chromosome 15p has no phenotypic effect. The presence of several individuals with 5p monosomy and 5p trisomy in the same family is valuable for a better delineation of both syndromes.  相似文献   

13.
Aortic coarctation is a life-threatening defect when it occurs with cardiorespiratory failure. Its genetic cause remains unknown. A woman was pregnant twice, both with male fetuses that had partial trisomy 18p, partial monosomy 18q, and aortic coarctation. The syndrome may relate to the aortic coarctation and pulmonary hypoplasia and is life-threatening. ArrayCGH analysis suggested a de novo 17.7 Mb deletion of chromosome 18q21.33 → qter (58,413,193 bp to 76,116,029 bp) and a de novo 12.4 Mb duplication of chromosome 18pter → p11.21 (1543 bp to 12,438,430 bp) at the telomeric end of chromosome 18. To the best of our knowledge, the present chromosomal breakpoint with rearrangement has not been previously described. This chromosome aberration may be responsible for this syndrome.  相似文献   

14.
We report on a familial case including four male probands from three generations with a 45,X,psu dic(15;Y)(p11.2;q12) karyotype. 45,X is usually associated with a female phenotype and only rarely with maleness, due to translocation of small Y chromosomal fragments to autosomes. These male patients are commonly infertile because of missing azoospermia factor regions from the Y long arm. In our familial case we found a pseudodicentric translocation chromosome, that contains almost the entire chromosomes 15 and Y. The translocation took place in an unknown male ancestor of our probands and has no apparent effect on fertility and phenotype of the carrier. FISH analysis demonstrated the deletion of the pseudoautosomal region 2 (PAR2) from the Y chromosome and the loss of the nucleolus organizing region (NOR) from chromosome 15. The formation of the psu dic(15;Y) chromosome is a reciprocal event to the formation of the satellited Y chromosome (Yqs). Statistically, the formation of 45,X,psu dic(15;Y) (p11.2;q12) is as likely as the formation of Yqs. Nevertheless, it has not been described yet. This can be explained by the dicentricity of this translocation chromosome that usually leads to mitotic instability and meiotic imbalances. A second event, a stable inactivation of one of the two centromeres is obligatory to enable the transmission of the translocation chromosome and thus a stably reduced chromosome number from father to every son in this family.  相似文献   

15.
We report on a Yq/15p translocation in a 23-year-old infertile male referred for Klinefelter Syndrome testing, who had azoospermia and bilateral small testes. Hormonal studies revealed hypergonadotropic hypogonadism. Conventional cytogenetic procedures giemsa trypsin giemsa (GTG) and high resolution banding (HRB) and molecular cytogenetic techniques Fluorescence In Situ Hybridization (FISH) performed on high-resolution lymphocyte chromosomes revealed the karyotype 46,XX, t(Y;15)(q12;p11). SRY-gene was confirmed to be present by classical Polymerase Chain Reaction (PCR) methods. His father carried de novo derivative chromosome 15 [45,X, t(Y;15)(q12;p11)] and was fertile; the karyotype of the father using G-band technique confirmed a reciprocal balanced translocation between chromosome Y and 15. In the proband, the der (15) has been inherited from the father because the mother had a normal karyotype (46,XX). In the proband, the der (15) could have produced genetic imbalance leading to unbalanced robertson translocation between chromosome Y and 15, which might have resulted in azoospermia and infertility in the proband. The paternal translocation might have lead to formation of imbalanced ova, which might be resulted infertility in the proband. Sister''s karyotypes was normal (46,XX) while his brother was not analyzed.  相似文献   

16.
Parental chromosome studies were referred to us after initial finding of a balanced translocation involving chromosomes 4 and 15 in their phenotypically abnormal male child (cytogenetic analysis was done at another laboratory). In addition to the same 4;15 translocation, the father also had an interstitial deletion of the long arm of one chromosome 6 and a marker chromosome. In this article, we report a neocentromere on this marker, which was determined to be composed of chromosome 6 material by FISH. The child's karyotype was re-interpreted to be unbalanced due to the presence of the abnormal chromosome 6, but without the marker. The clinical phenotype associated with the interstitial deletion of chromosome 6 is also reported.  相似文献   

17.
Chromosomal heteromorphisms are described as interindividual variation of chromosomes without phenotypic consequence. Chromosomal polymorphisms detected include most regions of heterochromatin of chromosomes 1, 9, 16 and Y and the short arms of all acrocentric chromosomes. Here, we report a girl with Down-syndrome such as facies and tremendously enlarged short arm of a chromosome 22. Fluorescence in situ hybridization (FISH) with a probe specific for all acrocentric short arms revealed that the enlargement p arms of the chromosome 22 in question contained exclusively heterochromatic material derived from an acrocentric short arm. Parental studies identified a maternal origin of this heteromorphism. Cryptic trisomy 21 of the Down-syndrome critical region was excluded by a corresponding FISH-probe. Here, we report, to the best of our knowledge, largest ever seen chromosome 22 short arm, being ~×1.5 larger than the normal long arm.  相似文献   

18.
Partial duplication of 11q is related to several malformations like growth retardation, intellectual disability, hypoplasia of corpus callosum, short nose, palate defects, cardiac, urinary tract abnormalities and neural tube defects. We have studied the clinical and molecular characteristics of a patient with severe intellectual disabilities, dysmorphic features, congenital inguinal hernia and congenital cerebral malformation which is referred to as cytogenetic exploration. We have used FISH and array CGH analysis for a better understanding of the double chromosomic aberration involving a 7p microdeletion along with a partial duplication of 11q due to adjacent segregation of a paternal reciprocal translocation t(7;11)(p22;q21) revealed after banding analysis. The patient's karyotype formula was: 46,XY,der(7)t(7;11)(p22;q21)pat. FISH study confirmed these rearrangement and array CGH technique showed precisely the loss of at least 140 Kb on chromosome7p22.3pter and 33.4 Mb on chromosome11q22.1q25. Dysmorphic features, severe intellectual disability and brain malformations could result from the 11q22.1q25 trisomy. Our study provides an additional case for better understanding and delineating the partial duplication 11q.  相似文献   

19.
Chromosomal rearrangements are common in humans. Pericentric inversions are among the most frequent aberrations (1–2%). Most inversions are balanced and do not cause problems in carriers unless one of the breakpoints disrupts important functional genes, has near submicroscopic copy number variants or hosts “cryptic” complex chromosomal rearrangements. Pericentric inversions can lead to imbalance in offspring. Less than 3% of Down syndrome patients have duplication as a result of parental pericentric inversion of chromosome 21. We report a family with an apparently balanced pericentric inversion of chromosome 21. The proband, a 23-year-old female was referred for prenatal diagnosis at 16 weeks gestation because of increased nuchal translucency. She has a familial history of Down's syndrome and moderate intellectual disability, a personal history of four spontaneous abortions and learning difficulties. Peripheral blood and amniotic fluid samples were collected to perform proband's and fetus' cytogenetic analyses. Additionally, another six family members were evaluated and cytogenetic analysis was performed. Complementary FISH and MLPA studies were carried out. An apparent balanced chromosome 21 pericentric inversion was observed in four family members, two revealed a recombinant chromosome 21 with partial trisomy, and one a full trisomy 21 with an inverted chromosome 21. Array CGH analysis was performed in the mother and the brother's proband. MLPA and aCGH studies identified a deletion of about 1.7 Mb on the long arm of inverted chromosome 21q22.11. We believe the cause of the intellectual disability/learning difficulties observed in the members with the inversion is related to this deletion. The recombinant chromosome 21 has a partial trisomy including the DSCR with no deletion. The risk for carriers of having a child with multiple malformations/intellectual disability is about 30% depending on whether and how this rearrangement interferes with meiosis.  相似文献   

20.
Cytogenetic analyses of constitutional diseases have disclosed several chromosomal rearrangements. At the molecular level, these rearrangements often result in the breakage of genes or alteration of genome architecture. Fluorescence in situ hybridization (FISH) and molecular investigations of a patient showing hypotonia and dysmorphic traits revealed a masked complex chromosome abnormality previously detected by G-banding as a simple 8qter deletion. To characterize the genetic rearrangements panels of bacterial artificial chromosomes (BACs) covering 8q24.22-->qter were constructed, and short tandem repeats (STRs) were used to refine the localization of the breakpoints and to assess the parental origin of the defect. Chromosome 8 displayed the breakpoint at 8q24.22 and an unexpected distal breakpoint at 8q24.23 resulting in unbalanced translocation of a small 8q genomic region on the chromosome 16qter. The study of the 16qter region revealed that the 16q subtelomere was retained and the translocated material of distal 8q was juxtaposed. Moreover, molecular analyses showed that part of the translocated 8qter segment on der(16) was partially duplicated, inverted and that the rearrangement arose in the paternal meiosis. These findings emphasize the complexity of some only apparently simple chromosomal rearrangements and suggest a subtelomeric FISH approach to enhance diagnostic care when a cytogenetic terminal deletion is found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号