首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 45 毫秒
1.
In the course of a reverse genetic screen in the Belgian Blue cattle breed, we uncovered a 10‐bp deletion (c.87_96del) in the first coding exon of the melanophilin gene (MLPH), which introduces a premature stop codon (p.Glu32Aspfs*1) in the same exon, truncating 94% of the protein. Recessive damaging mutations in the MLPH gene are well known to cause skin, hair, coat or plumage color dilution phenotypes in numerous species, including human, mice, dog, cat, mink, rabbit, chicken and quail. Large‐scale array genotyping undertaken to identify p.Glu32Aspfs*1 homozygous mutant animals revealed a mutation frequency of 5% in the breed and allowed for the identification of 10 homozygous mutants. As expression of a colored coat requires at least one wild‐type allele at the co‐dominant Roan locus encoded by the KIT ligand gene (KITLG), homozygous mutants for p.Ala227Asp corresponding with the missense mutation were excluded. The six remaining colored calves displayed a distinctive dilution phenotype as anticipated. This new coat color was named ‘cool gray’. It is the first damaging mutation in the MLPH gene described in cattle and extends the already long list of species with diluted color due to recessive mutations in MLPH and broadens the color palette of gray in this breed.  相似文献   

2.
3.
Coat color dilution turns black coat color to blue and red color to cream and is a characteristic in many mammalian species. Matings among Netherland Dwarf, Loh, and Lionhead Dwarf rabbits over two generations gave evidence for a monogenic autosomal recessive inheritance of coat colour dilution. Histological analyses showed non-uniformly distributed, large, agglomerating melanin granules in the hair bulbs of coat color diluted rabbits. We sequenced the cDNA of MLPH in two dilute and one black rabbit for polymorphism detection. In both color diluted rabbits, skipping of exons 3 and 4 was present resulting in altered amino acids at p.QGL[37-39]QWA and a premature stop codon at p.K40*. Sequencing of genomic DNA revealed a c.111-5C>A splice acceptor mutation within the polypyrimidine tract of intron 2 within MLPH. This mutation presumably causes skipping of exons 3 and 4. In 14/15 dilute rabbits, the c.111-5C>A mutation was homozygous and in a further dilute rabbit, heterozygous and in combination with a homozygous frame shift mutation within exon 6 (c.585delG). In conclusion, our results demonstrated a colour dilution associated MLPH splice variant causing a strongly truncated protein (p.Q37QfsX4). An involvement of further MLPH-associated mutations needs further investigations.  相似文献   

4.
5.
In rabbit, the dilute locus is determined by a recessive mutated allele (d) that causes the dilution of both eumelanic and pheomelanic pigmentations. In mice, similar phenotypes are determined by mutations in the myosin VA, Rab27a and melanophilin (MLPH) genes. In this study, we investigated the rabbit MLPH gene and showed that a mutation in this gene appears responsible for the dilute coat colour in this species. Checkered Giant F1 families segregating for black and grey (diluted or blue) coat colour were first genotyped for a complex indel in intron 1 of the MLPH gene that was completely associated with the coat colour phenotype (θ = 0.00; LOD = 4.82). Then, we sequenced 6357 bp of the MLPH gene in 18 rabbits of different coat colours, including blue animals. A total of 165 polymorphisms were identified: 137 were in non‐coding regions and 28 were in coding exons. One of them was a frameshift deletion in exon 5. Genotyping the half‐sib families confirmed the complete cosegregation of this mutation with the blue coat colour. The mutation was analysed in 198 rabbits of 23 breeds. All Blue Vienna and all other blue/grey/ash rabbits in other breeds (Californian, Castor Rex, Checkered Giant, English Spot, Fairy Marburg and Fairy Pearly) were homozygous for this deletion. The identification of MLPH as the responsible gene for the dilute locus in rabbit provides a natural animal model for human Griscelli syndrome type 3 and a new mutant to study the role of this gene on pigmentation.  相似文献   

6.
Meloidogyne sp. from five pecan (Carya illinoensis) orchards in Texas were distinctive in host range and iszoyme profiles from common species of Meloidogyne but were morphologically congruent with Meloidogyne partityla Kleynhans, a species previously known only in South Africa. In addition to pecan, species of walnut (Juglans hindsii and J. regia) and hickory (C. ovata) also were hosts. No reproduction was observed on 15 other plant species from nine families, including several common hosts of other Meloidogyne spp. Three esterase phenotypes and two malate dehydrogenase phenotypes of M. partityla were identified by polyacrylamide gel electrophoresis. Each of these isozyme phenotypes was distinct from those of the more common species M. arenaria, M. hapla, M. incognita, and M. javanica.  相似文献   

7.
M J Bray  T Werner  K A Dyer 《Heredity》2014,112(4):454-462
Pigmentation is a rapidly evolving trait that is under both natural and sexual selection in many organisms. In the quinaria group of Drosophila, nearly all of the 30 species have an abdomen that is light in color with distinct markings; D. tenebrosa is the exception in that it has a completely melanic abdomen with no visible markings. In this study, we use a combination of quantitative genetic and candidate gene approaches to investigate the genetic basis of abdominal pigmentation in D. tenebrosa. We find that abdominal pigmentation is invariant across wild-caught lines of D. tenebrosa and is not sexually dimorphic. Quantitative genetic mapping utilizing crosses between D. tenebrosa and the light-colored D. suboccidentalis indicates that two genomic regions together underlie abdominal pigmentation, including the X-chromosome and an autosome (Muller Element C/E). Further support for their central importance in pigmentation is that experimental introgression of one phenotype into the other species, in either direction, results in introgression of these two genomic regions. Finally, the expression of the X-linked gene yellow in the pupae exactly foreshadows the adult melanization pattern in the abdomen of both species, suggesting that changes in the regulation of yellow are important for the phenotypic divergence of D. tenebrosa from the rest of the quinaria group. These results contribute to a body of work that demonstrates how changes in expression of highly conserved genes can cause substantial phenotypic differences even between closely related species.  相似文献   

8.
In an attempt to insert the modified castor bean catalase intron (mCBC intron) into the coding sequence of the Cre recombinase gene, we found that the mCBC intron was not completely spliced from the resulting iCre gene in tobacco and Arabidopsis. Sequencing and allele-specific PCR analyses indicated that six nucleotides (UUACAG) at the 3′ terminus of the mCBC intron were retained in the mature mRNA of the iCre gene. Moreover, the mCBC intron was incompletely spliced from the Gus gene in pCAMBIA vectors. A mutational analysis of the mCBC intron demonstrated that the incomplete splicing was due to an artificial 3′ splice site introduced by the insertion of an adenine, which created a TAG (stop) codon near the 3′ splice site of the original CBC intron. Deletion of the inserted adenine or the six nucleotides that were retained from the mCBC intron led to the complete removal of the intron from the resulting iCre2 and iCre3 genes. Thus, in this study, we not only characterized the incomplete splicing event of the mCBC intron in tobacco and Arabidopsis, but also reported the construction of two intron-containing Cre recombinase genes that are useful for plant biotechnology applications.  相似文献   

9.
We isolated a new recessive allele at the AUXIN RESISTANT6/CULLIN1 (AXR6/CUL1) locus, axr6–101, from an EMS-mutagenized population of Arabidopsis thaliana, the Landsberg erecta ecotype. axr6–101 is auxin resistant and semi-dwarf similar to the other recessive axr6 mutants. The axr6–101 phenotype is caused by the E716K substitution of the CUL1 protein, which is likely to affect its ability to bind to the C-terminal RING domain of RING-box 1 (RBX1). The previously reported allele of AXR6, cul1–7, is caused by a substitution at T510 that binds to the N-terminal β-strand of RBX1. Although cul1–7 shows temperature-sensitive phenotype, the axr6–101 phenotype is largely unaffected by temperature. axr6–101 may provide an important genetic resource for study of the structure−function relationship of the CUL1 protein.  相似文献   

10.
Griscelli syndrome (GS) is a rare autosomal recessive disorder caused by mutations in either the myosin VA (GS1), RAB27A (GS2) or melanophilin (GS3) genes. The three GS subtypes are commonly characterized by pigment dilution of the skin and hair, due to defects involving melanosome transport in melanocytes. Here, we review how detailed studies concerning GS have contributed to a better understanding of the molecular mechanisms involved in vesicle transport and membrane trafficking processes. Additionally, we demonstrate that the identification and biological analysis of novel disease‐causing mutations highlighted the functional importance of the RAB27A‐MLPH‐MYO5A tripartite complex in intracellular melanosome transport. As the small GTPase Rab27a is able to interact with multiple effectors, including Slp2‐a and Myrip, we report on their presumed role in melanosome transport. Furthermore, we summarize data suggesting that RAB27B and RAB27A are functionally redundant and hereby provide further insight into the pathogenesis of GS2. Finally, we discuss how the gathered knowledge about the RAB27A‐MLPH‐MYO5A tripartite complex can be translated into a possible therapeutic application to reduce (hyper)pigmentation of the skin.  相似文献   

11.

Background and Aims

Leptochloa (including Diplachne) sensu lato (s.l.) comprises a diverse assemblage of C4 (NAD-ME and PCK) grasses with approx. 32 annual or perennial species. Evolutionary relationships and a modern classification of Leptochloa spp. based on the study of molecular characters have only been superficially investigated in four species. The goals of this study were to reconstruct the evolutionary history of Leptochloa s.l. with molecular data and broad taxon sampling.

Methods

A phylogenetic analysis was conducted of 130 species (mostly Chloridoideae), of which 22 are placed in Leptochloa, using five plastid (rpL32-trn-L, ndhA intron, rps16 intron, rps16-trnK and ccsA) and the nuclear ITS 1 and 2 (ribosomal internal transcribed spacer regions) to infer evolutionary relationships and revise the classification.

Key results

Leptochloa s.l. is polyphyletic and strong support was found for five lineages. Embedded within the Leptochloa sensu stricto (s.s.) clade are two Trichloris spp. and embedded in Dinebra are Drake-brockmania and 19 Leptochloa spp.

Conclusions

The molecular results support the dissolution of Leptochloa s.l. into the following five genera: Dinebra with 23 species, Diplachne with two species, Disakisperma with three species, Leptochloa s.s. with five species and a new genus, Trigonochloa, with two species.  相似文献   

12.
13.
Replicated artificial selection for high levels of voluntary wheel running in an outbred strain of mice favored an autosomal recessive allele whose primary phenotypic effect is a 50% reduction in hind-limb muscle mass. Within the High Runner (HR) lines of mice, the numerous pleiotropic effects (e.g., larger hearts, reduced total body mass and fat mass, longer hind-limb bones) of this hypothesized adaptive allele include functional characteristics that facilitate high levels of voluntary wheel running (e.g., doubling of mass-specific muscle aerobic capacity, increased fatigue resistance of isolated muscles, longer hind-limb bones). Previously, we created a backcross population suitable for mapping the responsible locus. We phenotypically characterized the population and mapped the Minimsc locus to a 2.6-Mb interval on MMU11, a region containing ∼100 known or predicted genes. Here, we present a novel strategy to identify the genetic variant causing the mini-muscle phenotype. Using high-density genotyping and whole-genome sequencing of key backcross individuals and HR mice with and without the mini-muscle mutation, from both recent and historical generations of the HR lines, we show that a SNP representing a C-to-T transition located in a 709-bp intron between exons 11 and 12 of the Myosin heavy polypeptide 4 (Myh4) skeletal muscle gene (position 67,244,850 on MMU11; assembly, December 2011, GRCm38/mm10; ENSMUSG00000057003) is responsible for the mini-muscle phenotype, Myh4Minimsc. Using next-generation sequencing, our approach can be extended to identify causative mutations arising in mouse inbred lines and thus offers a great avenue to overcome one of the most challenging steps in quantitative genetics.  相似文献   

14.
Porphyra yezoensis Ueda artificial pigmentation mutants, yel (green), fre (red‐orange) and bop (pink), obtained by treatment with /V‐methyl‐/V′‐nitro‐N‐nitrosoguanidine, were genetically analysed. The mutations associated with color phenotypes are recessive because all of the heterozygous conchocelis resembled the wild type color when they were crossed with the wild type (wt). In the reciprocal crosses of yel × wt, both parental colors and eight types of blades appeared in the F1 gametophytic blades from the heterozygous conchocelis. Both colors segregated in the sectored F1 blades in a 1:1 ratio, indicating that the color pheno‐type of yel resulted from a single mutation in the nuclear gene. In the reciprocal crosses of fre × wt, however, four colors and more than 40 types of blades appeared in the F1 blades from the heterozygous conchocelis, indicating that the color phenotype of fre resulted from two mutations in different genes. In the reciprocal crosses of bop×wt, three colors and 12 types of blades were observed in the F1 blades from the heterozygous conchocelis. Both parental colors appeared far more frequently than the third new color. These results indicated that the color phenotype of bop resulted from two closely linked mutations in different genes, and the epistasis occurred in the F1 blades. The mutants, yel, fre and bop, differ from the spontaneous green (C‐O), the red (H‐25) and the violet (V‐O) mutants of P. yezoensis, respectively.  相似文献   

15.
The phagocyte NADPH oxidase, dormant in resting cells, is activated during phagocytosis to produce superoxide, a precursor of microbicidal oxidants. The membrane-integrated protein gp91phox serves as the catalytic core, because it contains a complete electron-transporting apparatus from NADPH to molecular oxygen for superoxide production. Activation of gp91phox requires the cytosolic proteins p67phox, p47phox, and Rac (a small GTPase). p67phox, comprising 526 amino acids, moves upon cell stimulation to the membrane together with p47phox and there interacts with Rac; these processes are prerequisite for gp91phox activation. Here we show that a region of p67phox (amino acids 190–200) C-terminal to the Rac-binding domain is evolutionarily well conserved and participates in oxidase activation at a later stage in conjunction with an activation domain. Alanine substitution for Tyr-198, Leu-199, or Val-204 abrogates the ability of p67phox to support superoxide production by gp91phox-based oxidase as well as its related oxidases Nox1 and Nox3; the activation also involves other invariant residues such as Leu-193, Asp-197, and Gly-200. Intriguingly, replacement of Gln-192 by alanine or that of Tyr-198 by phenylalanine or tryptophan rather enhances superoxide production by gp91phox-based oxidase, suggesting a tuning role for these residues. Furthermore, the Y198A/V204A or L199A/V204A substitution leads to not only a complete loss of the activity of the reconstituted oxidase system but also a significant decrease in p67phox interaction with the gp91phox NADPH-binding domain, although these mutations affect neither the protein integrity nor the Rac binding activity. Thus the extended activation domain of p67phox (amino acids 190–210) containing the D(Y/F)LGK motif plays an essential role in oxidase activation probably by interacting with gp91phox.  相似文献   

16.
Shu Q  Wang L  Wu J  Du H  Liu Z  Ren H  Zhang J 《Gene》2012,493(1):113-123
Tree peony (Paeonia suffricotisa) cultivars have a unique character compared with wild species; the stamen petalody results in increased whorls of petals and generates different flower forms, which are one of the most important traits for cultivar classification. In order to investigate how petaloid stamens are formed, we obtained the coding sequence (666 bp) and genomic DNA sequence of the PsTM6 genes (belongs to B subfamily of MADS-box gene family) from 23 tree peony samples, Five introns and six exons consisted of the genomic DNA sequence. The analysis of cis-acting regulatory elements in the third and fourth intron indicated that they were highly conserved in all samples. Partial putative amino acids were analyzed and the results suggested that functional differentiation of PsTM6 paralogs apparently affected stamen petalody and flower shape formation due to due to amino acid substitution caused by differences in polarity and electronic charge. Sliding window analysis indicated that the different regions of PsTM6 were subjected to different selection forces, especially in the K domain. This is the first attempt to investigate genetic control of the stamen petalody based on the PsTM6 sequence. This will provide a basis for understanding the evolution of PsTM6 and its the function of in determining stamen morphology of tree peony.  相似文献   

17.
18.
We have investigated the functions of troponin T (CeTnT-1) in Caenorhabditis elegans embryonic body wall muscle. TnT tethers troponin I (TnI) and troponin C (TnC) to the thin filament via tropomyosin (Tm), and TnT/Tm regulates the activation and inhibition of myosin-actin interaction in response to changes in intracellular [Ca2+]. Loss of CeTnT-1 function causes aberrant muscle trembling and tearing of muscle cells from their exoskeletal attachment sites (Myers, C.D., P.-Y. Goh, T. StC. Allen, E.A. Bucher, and T. Bogaert. 1996. J. Cell Biol. 132:1061–1077). We hypothesized that muscle tearing is a consequence of excessive force generation resulting from defective tethering of Tn complex proteins. Biochemical studies suggest that such defective tethering would result in either (a) Ca2+-independent activation, due to lack of Tn complex binding and consequent lack of inhibition, or (b) delayed reestablishment of TnI/TnC binding to the thin filament after Ca2+ activation and consequent abnormal duration of force. Analyses of animals doubly mutant for CeTnT-1 and for genes required for Ca2+ signaling support that CeTnT-1 phenotypes are dependent on Ca2+ signaling, thus supporting the second model and providing new in vivo evidence that full inhibition of thin filaments in low [Ca2+] does not require TnT.  相似文献   

19.
The DEAD-box proteins CYT-19 in Neurospora crassa and Mss116p in Saccharomyces cerevisiae are broadly acting RNA chaperones that function in mitochondria to stimulate group I and group II intron splicing and to activate mRNA translation. Previous studies showed that the S. cerevisiae cytosolic/nuclear DEAD-box protein Ded1p could stimulate group II intron splicing in vitro. Here, we show that Ded1p complements mitochondrial translation and group I and group II intron splicing defects in mss116Δ strains, stimulates the in vitro splicing of group I and group II introns, and functions indistinguishably from CYT-19 to resolve different nonnative secondary and/or tertiary structures in the Tetrahymena thermophila large subunit rRNA-ΔP5abc group I intron. The Escherichia coli DEAD-box protein SrmB also stimulates group I and group II intron splicing in vitro, while the E. coli DEAD-box protein DbpA and the vaccinia virus DExH-box protein NPH-II gave little, if any, group I or group II intron splicing stimulation in vitro or in vivo. The four DEAD-box proteins that stimulate group I and group II intron splicing unwind RNA duplexes by local strand separation and have little or no specificity, as judged by RNA-binding assays and stimulation of their ATPase activity by diverse RNAs. In contrast, DbpA binds group I and group II intron RNAs nonspecifically, but its ATPase activity is activated specifically by a helical segment of E. coli 23S rRNA, and NPH-II unwinds RNAs by directional translocation. The ability of DEAD-box proteins to stimulate group I and group II intron splicing correlates primarily with their RNA-unwinding activity, which, for the protein preparations used here, was greatest for Mss116p, followed by Ded1p, CYT-19, and SrmB. Furthermore, this correlation holds for all group I and group II intron RNAs tested, implying a fundamentally similar mechanism for both types of introns. Our results support the hypothesis that DEAD-box proteins have an inherent ability to function as RNA chaperones by virtue of their distinctive RNA-unwinding mechanism, which enables refolding of localized RNA regions or structures without globally disrupting RNA structure.  相似文献   

20.
Several reports have shown that urotensin 2 (UTS2) and its receptor (UTS2R) are involved in glucose metabolism and insulin resistance, which lead to development of type 2 diabetes mellitus (T2DM) in humans. In the present study, we annotated both bovine UTS2 and UTS2R genes and identified 5 single nucleotide polymorphisms (SNPs) for the former gene and 14 mutations for the latter gene. Four mutations were genotyped on a Wagyu x Limousin reference population, including 6 F1 bulls, 113 F1 dams and ~250 F2 progeny. Among 12 phenotypes related to fat deposition and fatty acid composition, we observed that the UTS2 gene was significantly associated with the amount of skeletal saturated fatty acids, while its receptor (UTS2R) gene had significant effects on amounts of saturated and monounsaturated fatty acids, Δ9 desaturase activity for converting 16:0 into 16:1, muscle fat (marbling) score and Longissimus Dorsi muscle area. However, in this population, these markers were not associated with subcutaneous fat depth or percent kidney, pelvic and heart fat. We also found that mutations in the promoter regions altered the promoter activities in both genes and coding SNPs might affect the mRNA stability in the UTS2R gene. Overall, our present study provides the first evidence that both UTS2 and UTS2R genes regulate skeletal muscle fat accumulation and fatty acid metabolism, thus indicating their potential pathological functions related to obesity and T2DM in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号