首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High-molecular-weight glutenin subunits (HMW-GSs) are of considerable interest, because they play a crucial role in determining dough viscoelastic properties and end-use quality of wheat flour. In this paper, ChAy/Bx, a novel chimeric HMW-GS gene from Triticum turgidum ssp. dicoccoides (AABB, 2n = 4x = 28) accession D129, was isolated and characterized. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis revealed that the electrophoretic mobility of the glutenin subunit encoded by ChAy/Bx was slightly faster than that of 1Dy12. The complete ORF of ChAy/Bx contained 1671 bp encoding a deduced polypeptide of 555 amino acid residues (or 534 amino acid residues for the mature protein), making it the smallest HMW-GS gene known from Triticum species. Sequence analysis showed that ChAy/Bx was neither a conventional x-type nor a conventional y-type subunit gene, but a novel chimeric gene. Its first 1305 nt sequence was highly homologous with the corresponding sequence of 1Ay type genes, while its final 366 nt sequence was highly homologous with the corresponding sequence of 1Bx type genes. The mature ChAy/Bx protein consisted of the N-terminus of 1Ay type subunit (the first 414 amino acid residues) and the C-terminus of 1Bx type subunit (the final 120 amino acid residues). Secondary structure prediction showed that ChAy/Bx contained some domains of 1Ay subunit and some domains of 1Bx subunit. The special structure of this HMW glutenin chimera ChAy/Bx subunit might have unique effects on the end-use quality of wheat flour. Here we propose that homoeologous recombination might be a novel pathway for allelic variation or molecular evolution of HMW-GSs.  相似文献   

2.
滨麦低分子量谷蛋白亚基(LMW-GS)基因的分离与序列分析   总被引:1,自引:0,他引:1  
采用PCR方法,从滨麦(Leymus mollis)基因组中分离出8条LMW-GS基因序列.核苷酸序列分析表明,序列GQ169791在起始密码子上游包含318 bp的启动子序列,该序列包含-300元件、GCN4 motif、种子贮藏蛋白盒等基因特异表达的顺式或反式作用调控元件.推导的氨基酸序列分析表明,8条序列的编码区依次有信号肽,N-末端区,中部重复区和C-末端Ⅰ、Ⅱ、Ⅲ区等典型LMW-GS多肽一级结构特征;序列HQ416909、HQ416914和HQ416915具有单一完整的开放阅读框(ORF);序列GQ169791、HQ416910、HQ416911、HQ416912和HQ416913在中部重复区和C-末端区出现了4个或5个提前终止密码子,推断其为假基因.8条序列都含有8个或9个半胱氨酸残基(C),N-末端区起始氨基酸序列为METSRIPG-或METTRIPG-,推断其为LMW-m型LMW-GS基因.系统进化分析表明,8条序列与华山新麦草(Psathyrostachys huashanica)LMW-GS基因(HM475146,GQ223386)和野大麦(Hordeum brevisubulatum)的B-hordein基因(AY695368)具有相对较近的同源关系.该研究为挖掘利用滨麦LMW-GS的基因提供了理论依据,对小麦品质改良具有一定参考价值.  相似文献   

3.
Understanding the molecular structure of high-molecular-weight glutenin subunit (HMW-GS) may provide useful evidence for the study on the improvement of quality of cultivated wheat and the evolution of Glu-1 alleles. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) shows that the subunits encoded by Glu-B1 were null, named 1Bxm, in a Triticum turgidum var. dicoccoides line PI94640. Primers based on the conserved regions in wheat HMW-GS gene promoter and coding sequences were used to amplify the genomic DNA of line PI94640. The PCR products were sequenced, and the total nucleotide sequence of 3 442 bp including upstream sequence of 1 070 bp was obtained. Compared with the reported gene sequences of Glu-1Bx alleles, the promoter region of the Glu-1Bxm showed close resemblance to 1Bx7. The Glu-1Bxm coding region differs from the other Glu-1Bx alleles for a deduced mature protein with only 212 residues, and a stop codon (TAA) at 637 bp downstream from the start codon was present, which was probably responsible for the silencing of x-type subunit genes at the Glu-B1 locus. Phylogenetic tree based on the nucleotide sequence alignment of HMW glutenin subunit genes showed that 1Bxm was the most ancient type of Glu-B1 alleles, suggesting that the evolution rates are different among Glu-1Bx genes. Further study on the contribution of the unique silenced Glu-B1 alleles to quality improvement was also discussed.  相似文献   

4.
二粒小麦(Triticum turgidum L.var.dicoccoides)具有极其丰富的遗传多样性,是栽培小麦品种改良的巨大基因库。在高分子量谷蛋白基因的组成上,它具有许多栽培小麦不存在的变异类型,在Glu—B1位点上的变异更大。我们利用种子贮藏蛋白的SDS—PAGE方法从原产于伊朗的二粒小麦材料PI94640中观察到缺失Glu—B1区的高分子量谷蛋白亚基。利用Glu-1Bx基因保守序列设计PCR引物,对该材料的总DNA扩增,获得了X型亚基编码基因(Glu-1Bxm)的全序列,其全长为3442bp含1070bp的启动子区。序列比较发现,Glu-1Bxm在启动子区序列与Glu—1Bx7的最为相似。而在基因编码区,我们发现Glu—1Bxm仅编码212个氨基酸,由于开放阅读框中起始密码子后第637位核苷酸发生了点突变,即编码谷酰胺的CAA突变为终止密码TAA,可能直接导致了该高分子量谷蛋白亚基的失活,这是我们在小麦Glu—B1位点基因沉默分子证据的首次报道。将Glu—1Bxm全序列与Glu—B1位点其他等位基因进行了系统树分析,发现Glu—1Bxm是较为古老的类型。本文还对该特异高分子量谷蛋白亚基变异类型对品质遗传改良研究的意义进行了讨论。  相似文献   

5.
The high molecular weight glutenin subunit (HMW-GS) pair 1Bx13+1By16 are recognized to positively correlate with bread-making quality; however, their molecular data remain unknown. In order to reveal the mechanism by which 1By16 and 1Bx13 creates high quality, their open reading frames (ORFs) were amplified from common wheat Atlas66 and Jimai 20 using primers that were designed based on published sequences of HMW glutenin genes. The ORF of 1By16 was 2220bp, deduced into 738 amino acid residues with seven cysteines including 59 hexapeptides and 22 nanopeptides motifs. The ORF of 1Bx13 was 2385bp, deduced into 795 amino acid residues with four cysteines including 68 hexapeptides, 25 nanopeptides and six tripepUdes motifs. We found that 1By16 was the largest y-type HMW glutenin gene described to date in common wheat. The 1By16 had 36 amino acid residues inserted in the central repetitive domain compared with 1By15. Expression in bacteria and western-blot tests confirmed that the sequence cloned was the ORF of HMW-GS 1By16, and that 1Bx13 was one of the largest 1Bx genes that have been described so far in common wheat, exhibiting a hexapeptide (PGQGQQ) insertion in the end of central repetitive domain compared with 1Bx7. A phylogenetic tree based on the deduced full-length amino acid sequence alignment of the published HMW-GS genes showed that the 1By16 was clustered with Glu-1B-2, and that the 1Bx13 was clustered with Glu-1B-1 alleles.  相似文献   

6.
7.
Yang ZJ  Li GR  Shu HL  Liu C  Feng J  Chang ZJ  Ren ZL 《Hereditas》2006,143(2006):159-166
High molecular weight glutenin subunit (HMW-GS) 1Bx23, an x-type subset encoded by Glu-B1p, which is only distributed in Triticum turgidum, was successfully transferred from hexaploid triticale to common wheat line SY95-71. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) shows that subunit 1Bx23 has a faster mobility than subunit 1Bx7 and 1Bx20, but slower than 1Bx17. Primers designed from the conserved regions in wheat HMW-GS gene promoter and coding sequences were used to amplify the genomic DNA of SY95-71. Total nucleotide sequences of 3426 bp including an open reading frame of 2385 bp and upstream sequence of 1038 bp were obtained. Compared with the reported gene sequences of Glu-B1-1 alleles, including 1Bx7, 1Bx14, 1Bx20 and 1Bx17, the promoter region of the 1Bx23 was displayed close to 1Bx7 and 1Bx17. The deduced amino acid sequence of coding region of 1Bx23 exhibited 34, 30, 20 and 22 amino acid substitutions from that of 1Bx14, 1Bx20, 1Bx7 and 1Bx17, respectively. A phylogenetic tree based on the nucleotide sequence alignment of the Glu-1Bx alleles shows that the 1Bx23 are apparently clustered with 1Bx7 and 1Bx17, and more ancient than 1Bx14 and 1Bx20, suggesting that the evolution speeds are different among Glu-1Bx genes. Additionally, the potential use of wheat line SY95-71 to further screen the quality contribution of unique subunit 1Bx23 is also discussed.  相似文献   

8.
Two y-type high molecular weight glutenin subunits (HMW-GSs) 1Ay12? and 1Ay8? from the two accessions PI560720 and PI345186 of cultivated einkorn wheat (Triticum monococcum ssp. monococcum, AA, 2n = 2x = 14), were identified by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The mobility of 1Ay12? and 1Ay8? was similar to that of 1Dy12 and 1By8 from common wheat Chinese Spring, respectively. Their ORFs respectively consisted of 1812 bp and 1935 bp, encoding 602 and 643 amino acid residues with the four typical structural domains of HMW-GS including signal peptide, conserved N-, and C-terminal and central repetitive domains. Compared with the most similar active 1Ay alleles previous published, there were a total of 15 SNPs and 2 InDels in them. Their encoding functions were confirmed by successful heterogeneous expression. The two novel 1Ay alleles were named as 1Ay12? and 1Ay8? with the accession No. JQ318694 and JQ318695 in GenBank, respectively. The two alleles were classed into the two distinct groups, Phe-type and Cys-type, which might be relevant to the differentiation of Glu-A1-2 alleles. Of which, 1Ay8? belonged to Cys-type group, and its protein possessed an additional conserved cysteine residue in central repetitive region besides the six common ones in N- and C-terminal regions of Phe-type group, and was the second longest in all the known active 1Ay alleles. These results suggested that the subunit 1Ay8? of cultivated einkorn wheat accession PI345186 might have a potential ability to strengthen the gluten polymer interactions and be a valuable genetic resource for wheat quality improvement.  相似文献   

9.
The recently achieved significant improvement of cereal transformation protocols provides facilities to alter the protein composition of the endosperm, for example, to increase or decrease the quantity of one of its protein components or to express foreign molecules. To achieve this goal, strong endosperm-specific promoters have to be available. The aim of our work was to develop a more efficient tissue-specific promoter which is currently used. A chimaeric promoter was assembled using the 5′ UTR (1,900 bp) of the gene coding for the 1Bx17 HMW glutenin subunit protein, responsible for tissue-specific expression and the first intron of the rice actin gene (act1). The sequence around of the translation initial codon was optimized. The effect of the intron and promoter regulatory sequences, using different lengths of 1Bx17 HMW-GS promoter, were studied on the expression of uidA gene. The function of promoter elements, promoter length, and the first intron of the rice actin gene were tested by a transient expression assay in immature wheat endosperm and in stable transgenic rice plants. Results showed that insertion of the rice act1 first intron increased GUS expression by four times in transient assay. The shortest 1Bx17 HMW-GS promoter fragment (173 bp) linked to the intron and GUS reporter gene provided almost the same expression level than the intronless long 1Bx17 HMW-GS promoter. Analysis of the stable transformant plants revealed that 173 nucleotides were sufficient for endosperm-specific expression of the uidA gene, despite 13 nucleotides missing from the HMW enhancer sequence, a relevant regulatory element in the promoter region.  相似文献   

10.
小麦HMW-G12亚基基因启动子克隆及序列分析   总被引:1,自引:1,他引:1  
为了研究高分子量谷蛋白基因启动子在种子中的特异性表达,以小麦品种“东农7742”的基因组DNA为模板,根据已发表序列设计并合成引物,用PCR的方法克隆了小麦贮藏蛋白中高分子量谷蛋白12亚基基因的上游调控序列。序列测定结果表明:所克隆的启动子片段大小为424bp与Thomspon报道的序列比较,同源性为97.9%,有9个核苷酸发生了改变。推测的TATA box位于-27— -30bp,Prolamin-box位于-175— -181bp,认为该元件可能与转录速率的调控有关。  相似文献   

11.
 The high-molecular-weight glutenin (HMW) genes and encoded subunits are known to be critical for wheat quality characteristics and are among the best-studied cereal research subjects. Two lines of experiments were undertaken to further understand the structure and high expression levels of the HMW-glutenin gene promoters. Cross hybridizations of clones of the paralogous x-type and y-type HMW-glutenin genes to a complete set of six genes from a single cultivar showed that each type hybridizes best within that type. The extent of hybridization was relatively restricted to the coding and immediate flanking DNA sequences. Additional DNA sequences were determined for four published members of the HMW-glutenin gene family (encoding subunits Ax2*, Bx7, Dx5, and Dy10) and showed that the flanking DNA of the examined genes diverge at approximately −1200 bp 5′ to the start codon and 200–400 bp 3′ to the stop codon. These divergence sites may indicate the boundaries of sequences important in gene expression. In addition, promoter sequences were determined for alleles of the Bx gene (Glu-B1-1), a gene reported to show higher levels of expression than other HMW-glutenin genes and with variation among cultivars. The sequences of Bx promoters from three cultivars and one wild tetraploid wheat indicated that all Bx alleles had few differences and contained a duplicated portion of the promoter sequence “cereal-box” previously suspected as a factor in higher levels of expression. Thus, the “cereal-box” duplication preceeded the origin of hexaploid wheat, and provides no evidence to explain the variations in Bx subunit synthesis levels. One active Bx allele contained a 185-bp insertion that evidently resulted from a transposition event. Received: 5 August 1997 / Accepted: 6 November 1997  相似文献   

12.
13.
14.
陈华萍  黄乾明  魏育明  郑有良 《遗传》2007,29(7):859-866
根据小麦低分子量谷蛋白基因保守区序列设计引物P1/P2, 采用PCR法对四川小麦地方品种AS1643的基因组DNA进行扩增, 获得1条约900 bp的片段, 分离、纯化后连接到载体pMD18-T上, 对筛选阳性克隆测序, 获得1个低分子量谷蛋白基因LMW-AS1643(GenBank登录号: EF190322), 其编码区长度为909 bp, 可编码302个氨基酸残基组成的成熟蛋白。序列分析结果表明, LMW-AS1643具有典型的低分子量谷蛋白基因的基本结构, 其推导氨基酸序列与其它已知的LMW-GS相比, 最高相似性为93.40%。生物信息学分析表明, 在LMW-AS1643低分子量谷蛋白中, 无规则卷曲含量最高, 为67.90 %, 其次是a-螺旋, 占30.46 %, b-折叠含量最少, 为1.64 %。  相似文献   

15.
沈蕾  龙海  颜泽洪  魏育明  郑有良 《遗传》2006,28(1):57-64
采用PCR方法从小麦(Triticum aestivum L.)新品种“川麦42”中克隆得到一个低分子量谷蛋白亚基(LMW-GS)新基因,暂命名为LMWCM42-1。该基因编码区全长846 bp,编码281个氨基酸,具有LMW-GS基因的典型结构特征。推导氨基酸序列比较显示,尽管LMWCM42-1与已知LMW-GS高度相似,但在N-末端重复区部分重复单元和C-末端区中仍存在明显差异。聚类分析表明,LMWCM42-1可能是由Glu-D3位点编码的。  相似文献   

16.
The Glu-B1al (Bx7OE + By8) allele is important for bread-making quality. The allele was found in a Korean wheat landrace using specific DNA markers. Molecular analyses were conducted to identify the overexpressed Bx7 (Bx7OE) subunit of the allele. The Korean wheat landrace (accession ID: IT166460) showed a similar protein expression level of Bx7 subunit, i.e., overexpression of Bx7 subunit towards cv. Glenlea, Canadian Western Red Spring wheat, which harbors Bx7OE subunit of Glu-B1al as detected on SDS–PAGE (sodium dodecyl sulfate poly-acrylamide gel electrophoresis). In addition, 2-DE (two-dimensional electrophoresis) analysis revealed similar protein expression patterns of the Bx7 subunit regions of IT166460 and Glenlea. The proportion of Bx7 to total HMW-GSs (high molecular weight glutenin subunits) in IT166460 (56.17 ± 0.22%) was higher than that of Chinese Spring (34.75 ± 1.03%) and even that of Glenlea (46.25 ± 1.76%) as assessed by RP-HPLC (reverse-phase high-performance liquid chromatography). Overexpression of Bx7 subunit was caused by gene duplication and indels of the promoter region of the Bx7 gene. IT166460 attained the 43 bp indel of the promoter region, as did Glenlea, i.e., the amplicon size of IT166460 was the same as that of Glenlea. In addition, the nucleotides present in the duplicated gene in IT166460 were the same as those in Glenlea. Bx7OE subunit is critical for dough strength. However, most wheat accessions harboring the subunit are distributed in America. Furthermore, most Korean wheats have little genetic variation in glutenin composition and are associated with inferior bread quality. Hence, IT166460 could be used to improve bread-making quality in the Korean wheat breeding program.  相似文献   

17.
 Low-molecular-weight glutenin subunits (LMW-GS) represent a specific class of wheat storage proteins encoded at the Glu-3 loci. Particularly interesting are the LMW-GS encoded at the Glu-B3 locus because they have been shown to play an important role in determining the pasta-making properties of durum wheat. Genes encoding LMW-GS have been characterized but only a few of them have been assigned to specific loci. Notably, no complete LMW-GS gene encoded at the Glu-B3 locus has yet been described. The present paper reports the isolation and characterization of a lmw-gs gene located at the Glu-B3 locus. The clone involved, designated pLDNLMW1B, contains the entire coding region and 524 bp of the 5′ upstream region. A nucleotide comparison between the pLDNLMW1B clone and other LMW-GS genes showed the presence of some peculiar structural characteristics, such as short insertions in the promoter region, the presence of a cysteine codon in the repetitive domain, and a more regular structure of this region, which could be important for its tissue-specific expression and for the functional properties of the encoded protein, respectively. Received : 30 May 1997 / Accepted : 29 July 1997  相似文献   

18.
Increased expression of the high molecular weight glutenin subunit (HMW-GS) Bx7 is associated with improved dough strength of wheat (Triticum aestivum L.) flour. Several cultivars and landraces of widely different genetic backgrounds from around the world have now been found to contain this so-called over-expressing allelic form of the Bx7 subunit encoded by Glu-B1al. Using three methods of identification, SDS-PAGE, RP-HPLC and PCR marker analysis, as well as pedigree information, we have traced the distribution and source of this allele from a Uruguayan landrace, Americano 44D, in the mid-nineteenth century. Results are supported by knowledge of the movement of wheat lines with migrants. All cultivars possessing the Glu-B1al allele can be identified by the following attributes: (1) the elution of the By sub-unit peak before the Dx sub-unit peak by RP-HPLC, (2) high expression levels of Bx7 (>39% Mol% Bx), (3) a 43 bp insertion in the matrix-attachment region (MAR) upstream of the gene promoter relative to Bx7 and an 18 bp nucleotide duplication in the coding region of the gene. Evidence is presented indicating that these 18 and 43 bp sequence insertions are not causal for the high expression levels of Bx7 as they were also found to be present in a small number of hexaploid species, including Chinese Spring, and species expressing Glu-B1ak and Glu-B1a alleles. In addition, these sequence inserts were found in different isolates of the tetraploid wheat, T. turgidum, indicating that these insertion/deletion events occurred prior to hexaploidization.  相似文献   

19.
小麦HMW-GS 1Bx14基因特异标记体系的建立   总被引:2,自引:0,他引:2  
比较1Bx14及其它已知HMW-GS基因的启动子和编码区,根据其不同点设计出1Bx14基因特异扩增引物。以8种已知HMW-GS组成的小麦DNA为模板进行PCR扩增。结果表明:具有1Bx14亚基的品种扩增出1条400bp左朽特异条带。结合该特异标记和已报道的1Dx5特异标记对2个F2杂交群体进行检测,从184个F2单株中筛选出111个同时含有1Bx14和1Dx5基因的单株。该研究结果可为种质鉴定和亚基整合育种提供参考。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号