首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Drought and salinity stresses significantly altered microRNA (miRNA) expression in a dose-dependent manner in tobacco. Salinity stress changed the miRNA expression levels from a 6.86-fold down-regulation to a 616.57-fold up-regulation. Alternatively, miRNAs were down-regulated by 2.68-fold and up-regulated 2810-fold under drought conditions. miR395 was most sensitive to both stresses and was up-regulated by 616 and 2810-folds by 1.00% PEG and 0.171 M NaCl, respectively. Salinity and drought stresses also changed the expression of protein-coding genes [alcohol dehydrogenase (ADH) and alcohol peroxidase (APX)]. The results suggest that miRNAs may play an important role in plant response to environmental abiotic stresses. Further investigation of miRNA-mediated gene regulation may elucidate the molecular mechanism of plant tolerance to abiotic stresses and has the potential to create a miRNA-based biotechnology for improving plant tolerance to drought and salinity stresses.  相似文献   

2.
Sun G  Stewart CN  Xiao P  Zhang B 《PloS one》2012,7(3):e32017
Switchgrass has increasingly been recognized as a dedicated biofuel crop for its broad adaptation to marginal lands and high biomass. However, little is known about the basic biology and the regulatory mechanisms of gene expression in switchgrass, particularly under stress conditions. In this study, we investigated the effect of salt and drought stress on switchgrass germination, growth and the expression of small regulatory RNAs. The results indicate that salt stress had a gradual but significant negative effect on switchgrass growth and development. The germination rate was significantly decreased from 82% for control to 36% under 1% NaCl treatment. However, drought stress had little effect on the germination rate but had a significant effect on the growth of switchgrass under the severest salinity stress. Both salt and drought stresses altered the expression pattern of miRNAs in a dose-dependent manner. However, each miRNA responded to drought stress in a different pattern. Salt and drought stress changed the expression level of miRNAs mainly from 0.9-fold up-regulation to 0.7-fold down-regulation. miRNAs were less sensitive to drought treatment than salinity treatment, as evidenced by the narrow fold change in expression levels. Although the range of change in expression level of miRNAs was similar under salt and drought stress, no miRNAs displayed significant change in expression level under all tested salt conditions. Two miRNAs, miR156 and miR162, showed significantly change in expression level under high drought stress. This suggests that miR156 and miR162 may attribute to the adaption of switchgrass to drought stress and are good candidates for improving switchgrass as a biofuel crop by transgenic technology.  相似文献   

3.
4.
ZFP转录因子是植物中的一类具有指环结构域的转录因子。从毛果杨中鉴定出5条ZFP基因(命名为PtrZFP1-5),对其特性和表达模式进行了分析,以期初步了解这些基因是否能对胁迫做出应答。对PtrZFP1-5基因进行生物学分析,进一步利用qRT-PCR技术分析NaCl、PEG6000和ABA胁迫处理后毛果杨根、茎和叶中5条基因的表达情况。PtrZFP1-5基因编码蛋白氨基酸残基数为258~338 aa,编码蛋白的分子量为27.7~37.3 kDa,理论等电点为4.87~8.61,5个基因不均等的分布在毛果杨基因组的3条染色体上。qRT-PCR结果显示,0.2 mol·L-1 NaCl、15%(w/v)PEG6000和100 μmol·L-1 ABA胁迫处理后,5个PtrZFP基因在毛果杨根、茎和叶中的表达模式明显不同。PtrZFP1基因在3种胁迫后毛果杨中均被明显的上调表达;PtrZFP2基因在盐、渗透和ABA胁迫处理后,叶中的表达都明显被抑制;PtrZFP3基因受到干旱胁迫时在根中的响应最为明显;而叶和茎中,表达量在大部分胁迫的大部分时间点无明显改变。PtrZFP4基因也能在根和茎中对干旱胁迫做出明显应答。PtrZFP5基因在经受盐和ABA胁迫后,在叶中的表达受到明显抑制。PtrZFP1-5这5个基因至少能在一种器官中对一种胁迫处理做出应答,但参与的胁迫应答类型和机制可能不同。  相似文献   

5.
6.
MicroRNAs (miRNAs) are tiny non-coding regulatory molecules that modulate plant’s gene expression either by cleaving or repressing their mRNA targets. To unravel the plant actions in response to various environmental factors, identification of stress related miRNAs is essential. For understanding the regulatory behaviour of various abiotic stresses and miRNAs in wheat genotype C-306, we examined expression profile of selected conserved miRNAs viz. miR159, miR164, miR168, miR172, miR393, miR397, miR529 and miR1029 tangled in adapting osmotic, salt and cold stresses. The investigation revealed that two miRNAs (miR168, miR397) were down-regulated and miR172 was up-regulated under all the stress conditions. However, miR164 and miR1029 were up-regulated under cold and osmotic stresses in contrast to salt stress. miR529 responded to cold alone and does not change under osmotic and salt stress. miR393 showed up-regulation under osmotic and salt, and down-regulation under cold stress indicating auxin based differential cold response. Variation in expression level of studied miRNAs in presence of target genes delivers a likely elucidation of miRNAs based abiotic stress regulation. In addition, we reported new stress induced miRNAs Ta-miR855 using computational approach. Results revealed first documentation that miR855 is regulated by salinity stress in wheat. These findings indicate that diverse miRNAs were responsive to osmotic, salt and cold stress and could function in wheat response to abiotic stresses.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
 研究了等渗透势(-0.44、-0.88 MPa)NaCl和PEG 6000处理对六叶龄芦荟(Aloe vera)幼苗叶片生长速率、干物质积累、电解质渗漏和离子吸收、分配的效应。结果表明: -0.44、-0.88 MPa NaCl和PEG处理10 d均明显抑制芦荟幼苗叶片伸长生长,植株干物质积累速率显著降低, 叶片含水量降低,叶片细胞电解质渗漏率上升。NaCl对芦荟幼苗生长的抑制作用显著大于PEG处理的。不同器官离子含量、根系和叶片横切面X-射线微区分析结果表明, NaCl胁迫导致芦荟体内Na+、Cl-含量显著上升,根中增幅明显高于叶片,其中Cl-尤为显著。NaCl胁迫严重抑制芦荟对K+ 和Ca2+ 的吸收及其向叶片的运输,根、叶K+/Na+、Ca2+/Na+ 比率显著下降,而PEG胁迫对离子平衡的干扰较轻,是芦荟对水分胁迫的适应能力高于盐胁迫的主要原因之一。但芦荟对 -0.44~-0.88 MPa NaCl胁迫仍有一定的适应能力,主要原因是:1) 根系对离子的选择性吸收和运输较强,并随着盐胁迫强度增加其选择性增强; 2) 芦荟叶片中的盐分在贮水组织中显著积累,明显高于其它组织细胞。同时,芦荟是CAM(景天酸代谢)途径植物,蒸腾极小,盐分随蒸腾流进入地上部的机会小。  相似文献   

18.
19.
20.
Salinity and drought severely affect both plant growth and productivity, making the isolation and characterization of salinity- or drought-inducible promoters suitable for genetic improvement of crop resistance highly desirable. In this study, a 1468-bp sequence upstream of the translation initiation codon ATG of the promoter for ZmGAPP (maize Type-II H+-pyrophosphatase gene) was cloned. Nine 5´ deletion fragments (D1–D9) of different lengths of the ZmGAPP promoter were fused with the GUS reporter and translocated into tobacco. The deletion analysis showed that fragments D1–D8 responded well to NaCl and PEG stresses, whereas fragment D9 and CaMV 35S did not. The D8 segment (219 bp; -219 to -1 bp) exhibited the highest promoter activity of all tissues, with the exception of petals among the D1–D9 transgenic tobacco, which corresponds to about 10% and 25% of CaMV 35S under normal and NaCl or PEG stress conditions, respectively. As such, the D8 segment may confer strong gene expression in a salinity and osmotic stress inducible manner. A 71-bp segment (-219 to -148 bp) was considered as the key region regulating ZmGAPP response to NaCl or PEG stress, as transient transformation assays demonstrated that the 71-bp sequence was sufficient for the salinity or osmotic stress response. These results enhance our understanding of the molecular mechanisms regulating ZmGAPP expression, and that the D8 promoter would be an ideal candidate for moderating expression of drought and salinity response genes in transgenic plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号