首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 15 毫秒
1.
Ness GC  Holland RC 《FEBS letters》2005,579(14):3126-3130
In contrast with the accelerated degradation observed in tumor cells in response to sterols, hepatic 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase turnover in whole animals was not increased by dietary cholesterol. Furthermore, treating rats with lovastatin to lower hepatic cholesterol levels did not decrease the rate of degradation. The half-life remained in the 6 h range. Co-immunoprecipitation studies revealed that the amount of ubiquitin associated with the reductase was entirely dependent upon the amount of microsomal protein subjected to immunoprecipitation. The results indicate that in liver, neither the rate of reductase protein degradation nor the ubiquitin-proteasome system appear to play roles in mediating changes in HMG-CoA reductase protein levels in response to dietary cholesterol.  相似文献   

2.
Dietary cholesterol and aging are major risk factors to accelerate oxidation process for developing hypercholesterolemia. The major aim of this study is to elucidate the effects of rice protein on cholesterol level and oxidative stress in adult rats fed with and without cholesterol. After 2 weeks of feeding, hepatic and plasma contents of cholesterol, reduced glutathione (GSH), oxidized glutathione (GSSG), malondialdehyde (MDA) and protein carbonyl (PCO) were measured. In liver, total antioxidative capacity (T-AOC), activities of antioxidant enzymes (total superoxide dismutase, T-SOD; catalase, CAT), glutathione metabolizing enzyme activities and gene expression levels (γ-glutamylcysteine synthetase, γ-GCS; glutathione reductase, GR; glutathione peroxidase, GPx) were determined. Under cholesterol-free/enriched dietary condition, T-AOC, activities of T-SOD and CAT, glutathione metabolism related enzymes' activities and mRNA levels (γ-GCS, GR and GPx) were effectively stimulated by rice proteins as compared to caseins. Compared with caseins, rice proteins significantly increased hepatic and plasma GSH contents, whereas hepatic and plasma accumulations of MDA, PCO and GSSG were significantly reduced by rice protein-feedings. As a result, the marked reductions of cholesterol in the plasma and in the liver were observed in adult rats fed rice proteins with and without cholesterol. The present study demonstrates that the hypocholesterolemic effect of rice protein is attributable to inducing antioxidative response and depressing oxidative damage in adult rats fed cholesterol-free/enriched diets. Results suggest that the antioxidant capability involved in the hypocholesterolemic action exerted by rice protein is independent of dietary cholesterol during adult period.  相似文献   

3.
Regulation of intracellular cholesterol metabolism has been studied in Epstein-Barr virus-transformed lymphoblasts from patients with Niemann-Pick type C (NPC) and the Nova Scotia type D (NPD) disease. Addition of LDL to normal lymphoblasts cultured in lipoprotein-deficient medium increased cholesterol esterification 10-fold (to a maximum of 1.0 nmol/h/mg protein at 15 h), while little stimulation was seen in NPC cells. The response by NPD lymphoblasts was intermediate, reaching approximately half of normal values by 12–24 h. Lymphoblasts from both NPC and NPD obligate heterozygotes exhibited 50% of normal LDL-stimulated cholesterol esterification at 6 h, when activity was s1?0% of normal values in patient cells. Fluorescence staining with filipin indicated excessive intracellular accumulation of LDL-derived cholesterol in both NPC and NPD lymphoblasts. Downregulation of LDL receptor mRNA levels by LDL, measured by S1 nuclease protection assay, was also impaired in NP lymphoblasts and fibroblasts (NPC > NPD), although a similar rate of receptor protein down-regulation by LDL (t12 = 10–15 h) was observed in normal and NP lymphoblasts. In contrast, LDL down-regulation of 3-hydroxy-3-methylglutaryl-CoA reductase mRNA did not appear to be affected in NP cells: LDL produced a 3-fold (lymphoblasts) of > 10-fold (fibroblasts) decrease by 12 h in both normal and affected cells. Thus, NPC and NPD lymphoblasts exhibit distinct defects in cholesterol esterification and storage, similar to those observed in mutant fibroblasts. Other regulatory responses are also impaired in NPC lymphoblasts but appear to be less affected in NPD cells. Lymphoblasts should provide a valuable immortalized cell line model for study of defective regulation of cholesterol esterification and transfort in Niemann-Pick type II disease, and may also suitable for diagnosis and carrier detection.  相似文献   

4.
Rui X  Caiqin L  Wangjin L  Juan D  Zehuai W  Jianguo L 《Gene》2012,498(1):28-35
3-Hydroxy-3-methylglutaryl coenzyme A reductase (HMGR, EC: 1.1.1.34), an enzyme catalyzing the first committed step in the mevalonic acid (MVA) pathway for the biosynthesis of isoprenoids, has been reported to be involved in the fruit size determination through the regulation of early cell division. In litchi, the cell number achieved by this early cell division determines the final fruit size, but whether HMGR plays any role in this process was unknown. In this study, we set out to address this question with gene cloning and expression analysis in fruits of different pheno- or genotypes. We found that the litchi genome includes two HMGR homologues, denoted as LcHMG1 and LcHMG2. Despite 70% sequence identity at the amino acid level, they exhibited distinct expression patterns during litchi fruit development. LcHMG1 expression was highest in the early stage of fruit development, correlated with the high level of cell division. Absolute levels of LcHMG1 expression varied among fruits of different pheno- or genotypes, with expression in large-fruited types reaching higher levels for longer duration compared to that in small-fruited types. The expression patterns for LcHMG1 strongly suggest that this gene is involved in early cell division and fruit size determination in litchi. In contrast, LcHMG2 was most highly expressed in the late stage of fruit development, in association with biosynthesis of isoprenoid compounds required for later cell enlargement. These findings provided new insights on the function of HMGR genes during fruit development.  相似文献   

5.
Glioblastoma is the most common malignant primary brain tumour in adults and one of the most lethal of all cancers. Growing evidence suggests that human tumours undergo abnormal lipid metabolism, characterised by an alteration in the mechanisms that regulate cholesterol homeostasis. We have investigated the effect that different antitumoural alkylphospholipids (APLs) exert upon cholesterol metabolism in the U-87 MG glioblastoma cell line. APLs altered cholesterol homeostasis by interfering with its transport from the plasma membrane to the endoplasmic reticulum (ER), thus hindering its esterification. At the same time they stimulated the synthesis of cholesterol from radiolabelled acetate and its internalisation from low-density lipoproteins (LDLs), inducing both 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) and LDL receptor (LDLR) genes. Fluorescent microscopy revealed that these effects promoted the accumulation of intracellular cholesterol. Filipin staining demonstrated that this accumulation was not confined to the late endosome/lysosome (LE/LY) compartment since it did not colocalise with LAMP2 lysosomal marker. Furthermore, APLs inhibited cell growth, producing arrest at the G2/M phase. We also used transmission electron microscopy (TEM) to investigate ultrastructural alterations induced by APLs and found an abundant presence of autophagic vesicles and autolysosomes in treated cells, indicating the induction of autophagy. Thus our findings clearly demonstrate that antitumoural APLs interfere with the proliferation of the glioblastoma cell line via a complex mechanism involving cholesterol metabolism, cell-cycle arrest or autophagy. Knowledge of the interrelationship between these processes is fundamental to our understanding of tumoural response and may facilitate the development of novel therapeutics to improve treatment of glioblastoma and other types of cancer.  相似文献   

6.

Objectives

Leptin is a hormone secreted from adipocytes. It regulates metabolism and energy homeostasis through the leptin receptor (LEPR) which is localized centrally in hypothalamus as well as in peripheral tissues. The aim of this study was to investigate the association of leptin receptor gene Q223R polymorphism on obesity in association with body mass index (BMI), lipid parameters, plasma leptin levels and homeostasis model assessment of insulin resistance (HOMA-IR).

Design and methods

The study included 110 obese and 90 non-obese subjects. The LEPR Q223R polymorphism was determined by polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP). Plasma leptin levels, serum lipid and antropometric parameters were measured.

Results

No association was found between LEPR gene Q223R polymorphism and BMI in both study and control groups. Strikingly study group with non-obese subjects and with the RR genotype (homozygous mutant) had significantly higher serum total cholesterol (p < 0.001) and low density lipoprotein cholesterol (LDL-cholesterol) levels (p < 0.05) than QR (heterozygous) and QQ (wild type) genotypes. In obese group, subjects with the RR genotypes had significantly higher triglycerides (p < 0.05) levels, waist (p < 0.05) and hip circumferences (p < 0.001) than the QQ and QR genotypes.

Conclusions

Our results suggest that the LEPR gene Q223R polymorphism has an association with waist and hip circumferences in obese group but no direct association with obesity although there is a significant influence on lipid profile both in obese and non-obese subjects.  相似文献   

7.
8.
Proteins/genes showing high sequence homology to the mammalian oxysterol binding protein (OSBP) have been identified in a variety of eukaryotic organisms from yeast to man. The unifying feature of the gene products denoted as OSBP-related proteins (ORPs) is the presence of an OSBP-type ligand binding (LB) domain. The LB domains of OSBP and its closest homologue bind oxysterols, while data on certain other family members suggest interaction with phospholipids. Many ORPs also have a pleckstrin homology (PH) domain in the amino-terminal region. The PH domains of the family members studied in detail are known to interact with membrane phosphoinositides and play an important role in the intracellular targeting of the proteins. It is plausible that the ORPs constitute a regulatory apparatus that senses the status of specific lipid ligands in membranes, using the PH and/or LB domains, and mediates information to yet poorly known downstream machineries. Functional studies carried out on the ORP proteins in different organisms indicate roles of the gene family in diverse cellular processes including control of lipid metabolism, regulation of vesicle transport, and cell signalling events.  相似文献   

9.
Liver X receptor alpha (LXRalpha) is a member of the nuclear receptor superfamily that is activated by oxysterols, and plays a pivotal role in regulating the metabolism, transport and uptake of cholesterol. Here, we demonstrate that LXRalpha also regulates the low-density lipoprotein receptor (LDLR) gene, which mediates the endocytic uptake of LDL cholesterol in the liver. An LXR agonist induced the expression of LDLR in cultured hepatoblastoma cells. Moreover, the LDLR promoter contained an LXR response element that was recognized by LXRalpha/RXRalpha (retinoid X receptor alpha) heterodimers in hepatoblastoma cells. These results suggest a novel pathway whereby LXRalpha might modulate cholesterol metabolism.  相似文献   

10.
Cholesterol metabolism in the brain is distinct from that in other tissues due to the fact that cholesterol itself is unable to pass across the blood-brain barrier. Elimination of brain cholesterol is mainly dependent on a neuronal-specific cytochrome P450, CYP46A1, catalyzing the conversion of cholesterol into 24(S)-hydroxycholesterol (24OHC), which is able to pass the blood-brain barrier. A suitable model for studying this elimination from human neuronal cells has not been described previously. It is shown here that differentiated Ntera2/clone D1 (NT2) cells express the key genes involved in brain cholesterol homeostasis including CYP46A1, and that the expression profiles of the genes observed during neuronal differentiation are those expected to occur in vivo. Thus there was a decrease in the mRNA levels corresponding to cholesterol synthesis enzymes and a marked increase in the mRNA level of CYP46A1. The latter increase was associated with increased levels of CYP46A1 protein and increased production of 24OHC. The magnitude of the secretion of 24OHC from the differentiated NT2 cells into the medium was similar to that expected to occur under in vivo conditions. An alternative to elimination of cholesterol by the CYP46A1 mechanism is elimination by CYP27A1, and the product of this enzyme, 27-hydroxycholesterol (27OHC), is also known to pass the blood-brain barrier. The CYP27A1 protein level decreased during the differentiation of the NT2 cells in parallel with decreased production of 27OHC. The ratio between 24OHC and 27OHC in the medium from the cultured cells increased, by a factor of 13, during the differentiation process. The results suggest that progenitor cells eliminate cholesterol in the form of 27OHC while neurogenesis induces a change to the CYP46A1 dependent pathway. Furthermore this study demonstrates that differentiated NT2 cells are suitable for studies of cholesterol homeostasis in human neurons.  相似文献   

11.
Urokinase plasminogen activator (uPA) plays important physiological and pathological roles in fibrinolysis, cancer metastasis, and atherosclerosis. One study suggested that uPA also has a major role in cholesterol biosynthesis in humans via its receptor uPAR. Thus, we investigated the associations of functional uPA polymorphism (plasminogen activator, urokinase; PLAU Pro141Leu, rs2227564) with serum lipid profiles in a Japanese cohort. The study included 5152 participants (1465 male, 3687 female; age range, 35–69 years) of the Daiko Study, a part of the Japan Multi-Institutional Collaborative Cohort Study (J-MICC Study). Subjects were enrolled at the Daiko Medical Center from June 2008 to May 2010. Low-density lipoprotein cholesterol (LDL-C) and non-HDL-C (subtraction of high-density lipoprotein cholesterol from total cholesterol) in fasting blood of participants were each classified into two groups, < or ≥ 140 mg/dL, and < or ≥ 170 mg/dL, respectively. Genotype frequencies of PLAU Pro141Leu (rs2227564) were 59.1% for ProPro, 35.6% for ProLeu, and 5.3% for LeuLeu, and were in Hardy–Weinberg equilibrium (p = 0.789). The allele frequencies were 0.769 for Pro and 0.231 for Leu. The multivariate-adjusted odd ratios (ORs) and 95% confidence intervals (CIs) for high LDL-C and non-HDL-C were 1.11 (95%CI; 1.00–1.23) and 1.16 (95%CI; 1.03–1.30) for those with Leu allele relative to ProPro. This study suggested that PLAU Pro141Leu (rs2227564) is significantly associated with serum lipid levels in a Japanese population.  相似文献   

12.
Although singly ablating Fabp1 or Scp2/Scpx genes may exacerbate the impact of high fat diet (HFD) on whole body phenotype and non-alcoholic fatty liver disease (NAFLD), concomitant upregulation of the non-ablated gene, preference for ad libitum fed HFD, and sex differences complicate interpretation. Therefore, these issues were addressed in male and female mice ablated in both genes (Fabp1/Scp2/Scpx null or TKO) and pair-fed HFD. Wild-type (WT) males gained more body weight as fat tissue mass (FTM) and exhibited higher hepatic lipid accumulation than WT females. The greater hepatic lipid accumulation in WT males was associated with higher hepatic expression of enzymes in glyceride synthesis, higher hepatic bile acids, and upregulation of transporters involved in hepatic reuptake of serum bile acids. While TKO had little effect on whole body phenotype and hepatic bile acid accumulation in either sex, TKO increased hepatic accumulation of lipids in both, specifically phospholipid and cholesteryl esters in males and females and free cholesterol in females. TKO-induced increases in glycerides were attributed not only to complete loss of FABP1, SCP2 and SCPx, but also in part to sex-dependent upregulation of hepatic lipogenic enzymes. These data with WT and TKO mice pair-fed HFD indicate that: i) Sex significantly impacted the ability of HFD to increase body weight, induce hepatic lipid accumulation and increase hepatic bile acids; and ii) TKO exacerbated the HFD ability to induce hepatic lipid accumulation, regardless of sex, but did not significantly alter whole body phenotype in either sex.  相似文献   

13.
Disruption of the Pex2 gene leads to peroxisome deficiency and widespread metabolic dysfunction. We previously demonstrated that peroxisomes are critical for maintaining cholesterol homeostasis, using peroxisome-deficient Pex2−/− mice on a hybrid Swiss Webster × 129S6/SvEv (SW/129) genetic background. Peroxisome deficiency activates hepatic endoplasmic reticulum (ER) stress pathways, leading to dysregulation of the endogenous sterol response mechanism. Herein, we demonstrate a more profound dysregulation of cholesterol homeostasis in newborn Pex2−/− mice congenic on a 129S6/SvEv (129) genetic background, and substantial differences between newborn versus postnatal Pex2−/− mice in factors that activate ER stress. These differences extend to relationships between activation of genes regulated by SREBP-2 versus PPARα. The SREBP-2 pathway is induced in neonatal Pex2−/− livers from 129 and SW/129 strains, despite normal hepatic cholesterol levels. ER stress markers are increased in newborn 129 Pex2−/− livers, which occurs in the absence of hepatic steatosis or accumulation of peroxins in the ER. Moreover, the induction of SREBP-2 and ER stress pathways is independent of PPARα activation in livers of newborn 129 and SW/129 Pex2−/− mice. Two-week-old wild-type mice treated with the peroxisome proliferator WY-14,643 show strong induction of PPARα-regulated genes and decreased expression of SREBP-2 and its target genes, further demonstrating that SREBP-2 pathway induction is not dependent on PPARα activation. Lastly, there is no activation of either SREBP-2 or ER stress pathways in kidney and lung of newborn Pex2−/− mice, suggesting a parallel induction of these pathways in peroxisome-deficient mice. These findings establish novel associations between SREBP-2, ER stress and PPARα pathway inductions.  相似文献   

14.
Liver is the major organ that regulates whole body cholesterol metabolism. Disrupted hepatic cholesterol homeostasis contributes to the pathogenesis of nonalcoholic steatohepatitis, dyslipidemia, atherosclerosis, and cardiovascular diseases. Hepatic bile acid synthesis is the major catabolic mechanism for cholesterol elimination from the body. Furthermore, bile acids are signaling molecules that regulate liver metabolism and inflammation. Autophagy is a highly-conserved lysosomal degradation mechanism, which plays an essential role in maintaining cellular integrity and energy homeostasis. In this review, we discuss emerging evidence linking hepatic cholesterol and bile acid metabolism to cellular autophagy activity in hepatocytes and macrophages, and how these interactions may be implicated in the pathogenesis and treatment of fatty liver disease and atherosclerosis.  相似文献   

15.

Objective

To investigate and compare the effects of two common dietary phytosterols, stigmasterol and β-sitosterol, in altering lipid metabolism and attenuating nonalcoholic fatty liver disease (NAFLD).

Methods

Stigmasterol and β-sitosterol were administered to mice at 0.4% in a high-fat western-style diet (HFWD) for 17?weeks.

Results

Stigmasterol and β-sitosterol significantly ameliorated HFWD-induced fatty liver and metabolic abnormalities, including elevated levels of hepatic total lipids, triacylglycerols, cholesterol and liver histopathology. Both phytosterols decreased the levels of intestinal bile acids, accompanied by markedly increased fecal lipid levels. In addition, they altered the expression of genes involved in lipid metabolism. β-Sitosterol was less effective in affecting most of these parameters. Lipidomic analysis of liver and serum samples showed that stigmasterol prevented the HFWD-induced elevation of some di- and triacylglycerol species and lowering of some phospholipid species. Stigmasterol also decreased serum levels of ceramides.

Conclusion

Stigmasterol and β-sitosterol, at a dose corresponding to that suggested for humans by the FDA for lowering cholesterol levels, are shown to alleviate HFWD-induced NAFLD. Stigmasterol was more effective than β-sitosterol, possibly because of its suppression of hepatic lipogenic gene expression and modulation of circulating ceramide levels.  相似文献   

16.
High density lipoprotein (HDL) has attracted the attention of biomedical community due to its well-documented role in atheroprotection. HDL has also been recently implicated in the regulation of islets of Langerhans secretory function and in the etiology of peripheral insulin sensitivity. Indeed, data from numerous studies strongly indicate that the functions of pancreatic β-cells, skeletal muscles and adipose tissue could benefit from improved HDL functionality. To better understand how changes in HDL structure may affect diet-induced obesity and type 2 diabetes we aimed at investigating the impact of Apoa1 or Lcat deficiency, two key proteins of peripheral HDL metabolic pathway, on these pathological conditions in mouse models. We report that universal deletion of apoa1 or lcat expression in mice fed western-type diet results in increased sensitivity to body-weight gain compared to control C57BL/6 group. These changes in mouse genome correlate with discrete effects on white adipose tissue (WAT) metabolic activation and plasma glucose homeostasis. Apoa1-deficiency results in reduced WAT mitochondrial non-shivering thermogenesis. Lcat-deficiency causes a concerted reduction in both WAT oxidative phosphorylation and non-shivering thermogenesis, rendering lcat?/? mice the most sensitive to weight gain out of the three strains tested, followed by apoa1?/? mice. Nevertheless, only apoa1?/? mice show disturbed plasma glucose homeostasis due to dysfunctional glucose-stimulated insulin secretion in pancreatic β-islets and insulin resistant skeletal muscles. Our analyses show that both apoa1?/? and lcat?/? mice fed high-fat diet have no measurable Apoa1 levels in their plasma, suggesting no direct involvement of Apoa1 in the observed phenotypic differences among groups.  相似文献   

17.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号