首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ancient genomics     
The past decade has witnessed a revolution in ancient DNA (aDNA) research. Although the field''s focus was previously limited to mitochondrial DNA and a few nuclear markers, whole genome sequences from the deep past can now be retrieved. This breakthrough is tightly connected to the massive sequence throughput of next generation sequencing platforms and the ability to target short and degraded DNA molecules. Many ancient specimens previously unsuitable for DNA analyses because of extensive degradation can now successfully be used as source materials. Additionally, the analytical power obtained by increasing the number of sequence reads to billions effectively means that contamination issues that have haunted aDNA research for decades, particularly in human studies, can now be efficiently and confidently quantified. At present, whole genomes have been sequenced from ancient anatomically modern humans, archaic hominins, ancient pathogens and megafaunal species. Those have revealed important functional and phenotypic information, as well as unexpected adaptation, migration and admixture patterns. As such, the field of aDNA has entered the new era of genomics and has provided valuable information when testing specific hypotheses related to the past.  相似文献   

2.
Millions to billions of DNA sequences can now be generated from ancient skeletal remains thanks to the massive throughput of next‐generation sequencing platforms. Except in cases of exceptional endogenous DNA preservation, most of the sequences isolated from fossil material do not originate from the specimen of interest, but instead reflect environmental organisms that colonized the specimen after death. Here, we characterize the microbial diversity recovered from seven c. 200‐ to 13 000‐year‐old horse bones collected from northern Siberia. We use a robust, taxonomy‐based assignment approach to identify the microorganisms present in ancient DNA extracts and quantify their relative abundance. Our results suggest that molecular preservation niches exist within ancient samples that can potentially be used to characterize the environments from which the remains are recovered. In addition, microbial community profiling of the seven specimens revealed site‐specific environmental signatures. These microbial communities appear to comprise mainly organisms that colonized the fossils recently. Our approach significantly extends the amount of useful data that can be recovered from ancient specimens using a shotgun sequencing approach. In future, it may be possible to correlate, for example, the accumulation of postmortem DNA damage with the presence and/or abundance of particular microbes.  相似文献   

3.
The DNA molecules that can be extracted from archaeological and palaeontological remains are often degraded and massively contaminated with environmental microbial material. This reduces the efficacy of shotgun approaches for sequencing ancient genomes, despite the decreasing sequencing costs of high‐throughput sequencing (HTS). Improving the recovery of endogenous molecules from the DNA extraction and purification steps could, thus, help advance the characterization of ancient genomes. Here, we apply the three most commonly used DNA extraction methods to five ancient bone samples spanning a ~30 thousand year temporal range and originating from a diversity of environments, from South America to Alaska. We show that methods based on the purification of DNA fragments using silica columns are more advantageous than in solution methods and increase not only the total amount of DNA molecules retrieved but also the relative importance of endogenous DNA fragments and their molecular diversity. Therefore, these methods provide a cost‐effective solution for downstream applications, including DNA sequencing on HTS platforms.  相似文献   

4.
The challenge of sequencing ancient DNA has led to the development of specialized laboratory protocols that have focused on reducing contamination and maximizing the number of molecules that are extracted from ancient remains. Despite the fact that success in ancient DNA studies is typically obtained by screening many samples to identify a promising subset, ancient DNA protocols have not, in general, focused on reducing the time required to screen samples. We present an adaptation of a popular ancient library preparation method that makes screening more efficient. First, the DNA extract is treated using a protocol that causes characteristic ancient DNA damage to be restricted to the terminal nucleotides, while nearly eliminating it in the interior of the DNA molecules, allowing a single library to be used both to test for ancient DNA authenticity and to carry out population genetic analysis. Second, the DNA molecules are ligated to a unique pair of barcodes, which eliminates undetected cross-contamination from this step onwards. Third, the barcoded library molecules include incomplete adapters of short length that can increase the specificity of hybridization-based genomic target enrichment. The adapters are completed just before sequencing, so the same DNA library can be used in multiple experiments, and the sequences distinguished. We demonstrate this protocol on 60 ancient human samples.  相似文献   

5.
With the decreasing cost of next-generation sequencing, deep sequencing of clinical samples provides unique opportunities to understand host-associated microbial communities. Among the primary challenges of clinical metagenomic sequencing is the rapid filtering of human reads to survey for pathogens with high specificity and sensitivity. Metagenomes are inherently variable due to different microbes in the samples and their relative abundance, the size and architecture of genomes, and factors such as target DNA amounts in tissue samples (i.e. human DNA versus pathogen DNA concentration). This variation in metagenomes typically manifests in sequencing datasets as low pathogen abundance, a high number of host reads, and the presence of close relatives and complex microbial communities. In addition to these challenges posed by the composition of metagenomes, high numbers of reads generated from high-throughput deep sequencing pose immense computational challenges. Accurate identification of pathogens is confounded by individual reads mapping to multiple different reference genomes due to gene similarity in different taxa present in the community or close relatives in the reference database. Available global and local sequence aligners also vary in sensitivity, specificity, and speed of detection. The efficiency of detection of pathogens in clinical samples is largely dependent on the desired taxonomic resolution of the organisms. We have developed an efficient strategy that identifies “all against all” relationships between sequencing reads and reference genomes. Our approach allows for scaling to large reference databases and then genome reconstruction by aggregating global and local alignments, thus allowing genetic characterization of pathogens at higher taxonomic resolution. These results were consistent with strain level SNP genotyping and bacterial identification from laboratory culture.  相似文献   

6.
The mitochondrial genome has been the traditional focus of most research into ancient DNA, owing to its high copy number and population-level variability. Despite this long-standing interest in mitochondrial DNA, it was only in 2001 that the first complete ancient mitogenomic sequences were obtained. As a result of various methodological developments, including the introduction of high-throughput sequencing techniques, the total number of ancient mitogenome sequences has increased rapidly over the past few years. In this review, we present a brief history of ancient mitogenomics and describe the technical challenges that face researchers in the field. We catalogue the diverse sequencing methods and source materials used to obtain ancient mitogenomic sequences, summarise the associated genetic and phylogenetic studies that have been conducted, and evaluate the future prospects of the field.  相似文献   

7.
We present an initial genomic analysis of the non-symbiotic scleractinian coral Lophelia pertusa, the dominant cold-water reef-building coral species in the North Atlantic Ocean. A significant fraction of the deep sequencing reads was of mitochondrial and microbial origins. SOLiD deep sequencing reads from fragment library experiments of total DNA and PCR amplified mitogenome generated about 21,000 times and 136,000 times coverage, respectively, of the 16,150bp mitogenome. Five polymorphic sites that include two non-synonymous sites in the NADH dehydrogenase subunit 5 genes were detected in both experiments. This observation is surprising since anthozoans in general exhibit very low mtDNA sequence variation at intraspecific level compared to nuclear sequences. More than fifty bacterial species associated with the coral isolate were also sequence detected, representing at least ten complete genomes. Most reads, however, were predicted to originate from the Lophelia nuclear genome.  相似文献   

8.
High‐throughput sequencing has dramatically fostered ancient DNA research in recent years. Shotgun sequencing, however, does not necessarily appear as the best‐suited approach due to the extensive contamination of samples with exogenous environmental microbial DNA. DNA capture‐enrichment methods represent cost‐effective alternatives that increase the sequencing focus on the endogenous fraction, whether it is from mitochondrial or nuclear genomes, or parts thereof. Here, we explored experimental parameters that could impact the efficacy of MYbaits in‐solution capture assays of ~5000 nuclear loci or the whole genome. We found that varying quantities of the starting probes had only moderate effect on capture outcomes. Starting DNA, probe tiling, the hybridization temperature and the proportion of endogenous DNA all affected the assay, however. Additionally, probe features such as their GC content, number of CpG dinucleotides, sequence complexity and entropy and self‐annealing properties need to be carefully addressed during the design stage of the capture assay. The experimental conditions and probe molecular features identified in this study will improve the recovery of genetic information extracted from degraded and ancient remains.  相似文献   

9.
张明  付巧妹 《人类学学报》2018,37(2):206-218
古DNA实验技术及高通量测序技术的出现和发展,使得直接从古老化石中进行遗传物质的提取及测序成为可能,与古人类相关的基因组学研究因此取得了一系列突破性进展,已灭绝的古老型人类(如:尼安德特人和丹尼索瓦人)与非洲以外现代人之间基因的相互影响已被诸多证据所证实。研究表明,在史前时期,早期现代人向非洲以外地区扩散时,遭遇到了现已灭绝的古老型人类,他们在同一时空内长期共存,并发生了基因交流,有一部分古老型人类基因因此流向了现代人,有些基因一直流传至今,对当今现代人的基因组成产生重大影响;此外,不同古老型人类之间也存在基因交流;而早期现代人也对部分古老型人类的基因组成造成了影响。化石与古DNA信息的证据均表明,史前各种人类之间的基因交流在多个地区发生多次,他们的基因交流共同构建了当今现代人的基因库,并在生理机能、形态和疾病发生率等方面对现代人造成了深远的影响。  相似文献   

10.
Dabney J  Meyer M 《BioTechniques》2012,52(2):87-94
High-throughput sequencing technologies frequently necessitate the use of PCR for sequencing library amplification. PCR is a sometimes enigmatic process and is known to introduce biases. Here we perform a simple amplification-sequencing assay using 10 commercially available polymerase-buffer systems to amplify libraries prepared from both modern and ancient DNA. We compare the performance of the polymerases with respect to a previously uncharacterized template length bias, as well as GC-content bias, and find that simply avoiding certain polymerase can dramatically decrease the occurrence of both. For amplification of ancient DNA, we found that some commonly used polymerases strongly bias against amplification of endogenous DNA in favor of GC-rich microbial contamination, in our case reducing the fraction of endogenous sequences to almost half.  相似文献   

11.
12.
Recently, the study of ancient DNA (aDNA) has been greatly enhanced by the development of second-generation DNA sequencing technologies and targeted enrichment strategies. These developments have allowed the recovery of several complete ancient genomes, a result that would have been considered virtually impossible only a decade ago. Prior to these developments, aDNA research was largely focused on the recovery of short DNA sequences and their use in the study of phylogenetic relationships, molecular rates, species identification and population structure. However, it is now possible to sequence a large number of modern and ancient complete genomes from a single species and thereby study the genomic patterns of evolutionary change over time. Such a study would herald the beginnings of ancient population genomics and its use in the study of evolution. Species that are amenable to such large-scale studies warrant increased research effort. We report here progress on a population genomic study of the Adélie penguin (Pygoscelis adeliae). This species is ideally suited to ancient population genomic research because both modern and ancient samples are abundant in the permafrost conditions of Antarctica. This species will enable us to directly address many of the fundamental questions in ecology and evolution.  相似文献   

13.
赵静  王传超 《人类学学报》2020,39(4):706-716
从古代原始材料中提取古DNA的方法多种多样,但是古DNA的研究受限于降解严重,内源性古DNA含量低,微生物和现生人群DNA污染严重等因素的影响。能否从古代人类遗骸中成功获取可靠且足量的内源性古DNA,一直是古DNA研究领域面临的实际困难和挑战。控制污染最直接且简便的策略就是在古DNA提取阶段的有效排除,本文整理了古DNA提取常用的去除污染的方法,对比分析了每种方法表现出来的优缺点。介绍了通常使用的骨粉裂解时间,并研究了在常温环境下,不同的裂解时间对古DNA回收效率的影响,提出了常温裂解过程中最佳孵育时间。同时对常用的古DNA纯化方法及其原理和在实际应用中的表现进行了概述与讨论。本文对古DNA提取技术的概述和实践经验,为古DNA相关领域的研究提供借鉴与参考。  相似文献   

14.
15.
The field of ancient DNA (aDNA) has rapidly accelerated in recent years as a result of new methods in next-generation sequencing, library preparation and targeted enrichment. Such research is restricted, however, by the highly variable DNA preservation within different tissues, especially when isolating ancient pathogens from human remains. Identifying positive candidate samples via quantitative PCR (qPCR) for downstream procedures can reduce reagent costs, increase capture efficiency and maximize the number of sequencing reads of the target. This study uses four qPCR assays designed to target regions within the Mycobacterium tuberculosis complex (MTBC) to examine 133 human skeletal samples from a wide geographical and temporal range, identified by the presence of skeletal lesions typical of chronic disseminated tuberculosis. Given the inherent challenges working with ancient mycobacteria, strict criteria must be used and primer/probe design continually re-evaluated as new data from bacteria become available. Seven samples tested positive for multiple MTBC loci, supporting them as strong candidates for downstream analyses. Using strict and conservative criteria, qPCR remains a fast and effective screening tool when compared with screening by more expensive sequencing and enrichment technologies.  相似文献   

16.
热泉微生物化石的识别研究及其科学意义   总被引:4,自引:3,他引:4  
现代海底热液喷口以及许多陆地热泉周围生活着密集的生物群落。热液生态系统的初级生产者嗜热细菌和古细菌(Archaea),其初级能量来源是由地球深部上升喷出流体提供的化学能。围绕现代热泉微生物及其与地史时期热泉微生物化石的对比研究表明,它们具有相似结构特征。研究微生物成矿机制和微生物化石化作用,以及沉积物中由生物化学作用产生的生物标志,不仅有助于探讨海底热液活动的规律性和成矿机制,也可以为鉴别古老岩石和地外矿物中生命现象提供更多更详细的鉴定标志,对于理解生命起源和地外生命都有重要的理论意义。  相似文献   

17.
Paleogenomics is the nascent discipline concerned with sequencing and analysis of genome‐scale information from historic, ancient, and even extinct samples. While once inconceivable due to the challenges of DNA damage, contamination, and the technical limitations of PCR‐based Sanger sequencing, following the dawn of the second‐generation sequencing revolution, it has rapidly become a reality. However, a significant challenge facing ancient DNA studies on extinct species is the lack of closely related reference genomes against which to map the sequencing reads from ancient samples. Although bioinformatic efforts to improve the assemblies have focused mainly in mapping algorithms, in this article we explore the potential of an alternative approach, namely using reconstructed ancestral genome as reference for mapping DNA sequences of ancient samples. Specifically, we present a preliminary proof of concept for a general framework and demonstrate how under certain evolutionary divergence thresholds, considerable mapping improvements can be easily obtained.  相似文献   

18.
Recent ancient DNA (aDNA) studies of human pathogens have provided invaluable insights into their evolutionary history and prevalence in space and time. Most of these studies were based on DNA extracted from teeth or postcranial bones. In contrast, no pathogen DNA has been reported from the petrous bone which has become the most desired skeletal element in ancient DNA research due to its high endogenous DNA content. To compare the potential for pathogenic aDNA retrieval from teeth and petrous bones, we sampled these elements from five ancient skeletons, previously shown to be carrying Yersinia pestis. Based on shotgun sequencing data, four of these five plague victims showed clearly detectable levels of Y. pestis DNA in the teeth, whereas all the petrous bones failed to produce Y. pestis DNA above baseline levels. A broader comparative metagenomic analysis of teeth and petrous bones from 10 historical skeletons corroborated these results, showing a much higher microbial diversity in teeth than petrous bones, including pathogenic and oral microbial taxa. Our results imply that although petrous bones are highly valuable for ancient genomic analyses as an excellent source of endogenous DNA, the metagenomic potential of these dense skeletal elements is highly limited. This trade‐off must be considered when designing the sampling strategy for an aDNA project.  相似文献   

19.
Ancient DNA research has developed rapidly over the past few decades due to improvements in PCR and next‐generation sequencing (NGS) technologies, but challenges still exist. One major challenge in relation to ancient DNA research is to recover genuine endogenous ancient DNA sequences from raw sequencing data. This is often difficult due to degradation of ancient DNA and high levels of contamination, especially homologous contamination that has extremely similar genetic background with that of the real ancient DNA. In this study, we collected whole‐genome sequencing (WGS) data from 6 ancient samples to compare different mapping algorithms. To further explore more effective methods to separate endogenous DNA from homologous contaminations, we attempted to recover reads based on ancient DNA specific characteristics of deamination, depurination, and DNA fragmentation with different parameters. We propose a quick and improved pipeline for separating endogenous ancient DNA while simultaneously decreasing homologous contaminations to very low proportions. Our goal in this research was to develop useful recommendations for ancient DNA mapping and for separation of endogenous DNA to facilitate future studies of ancient DNA.  相似文献   

20.
Population genomic analyses have demonstrated power to address major questions in evolutionary and molecular microbiology. Collecting populations of genomes is hindered in many microbial species by the absence of a cost effective and practical method to collect ample quantities of sufficiently pure genomic DNA for next-generation sequencing. Here we present a simple method to amplify genomes of a target microbial species present in a complex, natural sample. The selective whole genome amplification (SWGA) technique amplifies target genomes using nucleotide sequence motifs that are common in the target microbe genome, but rare in the background genomes, to prime the highly processive phi29 polymerase. SWGA thus selectively amplifies the target genome from samples in which it originally represented a minor fraction of the total DNA. The post-SWGA samples are enriched in target genomic DNA, which are ideal for population resequencing. We demonstrate the efficacy of SWGA using both laboratory-prepared mixtures of cultured microbes as well as a natural host–microbe association. Targeted amplification of Borrelia burgdorferi mixed with Escherichia coli at genome ratios of 1:2000 resulted in >105-fold amplification of the target genomes with <6.7-fold amplification of the background. SWGA-treated genomic extracts from Wolbachia pipientis-infected Drosophila melanogaster resulted in up to 70% of high-throughput resequencing reads mapping to the W. pipientis genome. By contrast, 2–9% of sequencing reads were derived from W. pipientis without prior amplification. The SWGA technique results in high sequencing coverage at a fraction of the sequencing effort, thus allowing population genomic studies at affordable costs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号