首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Sun C  Southard C  Olopade OI  Di Rienzo A 《Gene》2011,481(1):24-28
Differential allelic expression (DAE) is a powerful tool to identify cis-regulatory elements for gene expression. The UDP-glucuronosyltransferase 2 family, polypeptide B15 (UGT2B15), is an important enzyme involved in the metabolism of multiple endobiotics and xenobiotics. In the present study, we measured the relative expression of two alleles at SNP c.1568C>A (rs4148269) in this gene, which causes an amino acid substitution (T523K). An excess of the C over the A allele was consistently observed in both liver (P = 0.0021) and breast (P = 0.012) samples, suggesting that SNP(s) in strong linkage disequilibrium (LD) with c.1568C>A can regulate UGT2B15 expression in both tissues. By resequencing, one such SNP, c.1761T>C (rs3100) in 3′ untranslated region (UTR), was identified. Reporter gene assays showed that the 1761T allele results in a significantly higher gene expression level than the 1761C allele in HepG2, MCF-7, LNCaP, and Caco-2 cell lines (all P < 0.001), thus indicating that this variation can regulate UGT2B15 gene expression in liver, breast, colon, and prostate tissues. Considering its location, we postulated that this SNP is within an unknown microRNA binding site and can influence microRNA targeting. Considering the importance of UGT2B15 in metabolism, we proposed that this SNP might contribute to multiple cancer risk and variability in drug response.  相似文献   

5.
The myostatin gene (MSTN) is a genetic determinant of skeletal muscle growth. Single nucleotide polymorphisms (SNP) in MSTN are of importance due to their strong associations with horse racing performances. In this study, we screened the SNPs in MSTN gene in 514 horses from 15 Chinese horse breeds. Six SNPs (g.26 T > C, g.156 T > C, g.587A > G, g.598C > T, g.1485C > T, g.2115A > G) in MSTN gene were detected by sequencing and genotyped using PCR-RFLP method. The g.587A > G and g.598C > T residing in the 5′UTR region were novel SNPs identified by this study. The g.2115A > G which have previously been associated with racing performances were present in Chinese horse breeds, providing valuable genetic information for evaluating the potential racing performances in Chinese domestic breeds. The six SNPs together defined thirteen haplotypes, demonstrating abundant haplotype diversities in Chinese horses. Most of the haplotypes were shared among different breeds with no haplotype restricted to a specific region or a single horse breed. AMOVA analysis indicated that most of the genetic variance was attributable to differences among individuals without any significant contribution by the four geographical groups. This study will provide fundamental and instrumental genetic information for evaluating the potential racing performances of Chinese horse breeds.  相似文献   

6.
Versican is an extracellular chondroitin sulfate proteoglycan which functions as a structural molecule but can also regulate a variety of cellular activities. This study was designed to explore the roles of versican in the process of dermal wound repair. To elevate levels of versican, we ectopically expressed the versican 3′-untranslated region (3′UTR) as a competitive endogenous RNA to modulate expression of versican. We demonstrated that wounds closed faster in transgenic mice expressing the versican 3′UTR, as compared to those in wildtype mice. We stably expressed versican 3′UTR in NIH3T3 fibroblasts and found that the 3′UTR-transfected cells showed increased migratory capacity relative to vector-transfected cells. Interestingly, we found that the 3′UTRs of versican and β-catenin shared common microRNAs (miRNAs) including miR-185, miR-203*, miR-690, miR-680, and miR-434-3p. Luciferase assays showed that all of these miRNAs could target the 3′UTRs of both versican and β-catenin, when the luciferase constructs contained fragments harboring the miRNA binding sites. As a consequence, expression of both versican and β-catenin was up-regulated, which was confirmed in vitro and in vivo. Transfection with small interfering RNAs (siRNAs) targeting the versican 3′UTR abolished the 3′UTR's effects on cell migration and invasion. Taken together, these results demonstrate that versican plays important roles in wound repair and that versican messenger RNAs (mRNAs) could compete with endogenous RNAs for regulating miRNA functions.  相似文献   

7.
8.
9.
Interferon-α (IFN-α) genes have been cloned from a variety of animals, but information regarding crane IFN-α has not been reported to date. In this study, we cloned a full-length Red-crowned Crane interferon-α (crIFN-α) gene sequence consisting of a 486 bp partial 5′ UTR, 741 bp complete ORF and 559 bp partial 3′ UTR. This gene encodes a protein of 246 amino acids and shares 60 to 80% identity with avian IFN-α and less than 45% identity with mammalian IFN-α. The expression of crIFN-α with an N-terminal His-tag was investigated in Escherichia coli, and the protein was purified on a nickel column. To obtain activated proteins, crIFN-α inclusion bodies were renatured by dialysis. In vitro cytopathic inhibition assays indicated that the recombinant crIFN-α could inhibit the replication of vesicular stomatitis virus in chicken fibroblasts. These antiviral activities were abrogated by rabbit anti-crIFN-α antibodies in vitro. In addition, an immunofluorescence assay indicated that crIFN-α could be expressed in chicken fibroblasts and was primarily located in the cytoplasm. Taken together, our results suggest that the crIFN-α gene may play an important role in inhibiting the replication of viruses.  相似文献   

10.
11.
12.
13.
14.
Most mammalian genes often feature alternative polyadenylation (APA) sites and hence diverse 3’UTR lengths. Proliferating cells were reported to favor APA sites that result in shorter 3’UTRs. One consequence of such shortening is escape of mRNAs from targeting by microRNAs (miRNAs) whose binding sites are eliminated. Such a mechanism might provide proliferation-related genes with an expression gain during normal or cancerous proliferation. Notably, miRNA sites tend to be more active when located near both ends of the 3’UTR compared to those located more centrally. Accordingly, miRNA sites located near the center of the full 3’UTR might become more active upon 3''UTR shortening. To address this conjecture we performed 3'' sequencing to determine the 3'' ends of all human UTRs in several cell lines. Remarkably, we found that conserved miRNA binding sites are preferentially enriched immediately upstream to APA sites, and this enrichment is more prominent in pro-differentiation/anti-proliferative genes. Binding sites of the miR17-92 cluster, upregulated in rapidly proliferating cells, are particularly enriched just upstream to APA sites, presumably conferring stronger inhibitory activity upon shortening. Thus 3’UTR shortening appears not only to enable escape from inhibition of growth promoting genes but also to potentiate repression of anti-proliferative genes.  相似文献   

15.
16.
17.
Background: Most eukaryotic protein-coding genes exhibit alternative cleavage and polyadenylation (APA), resulting in mRNA isoforms with different 3′ untranslated regions (3′ UTRs). Studies have shown that brain cells tend to express long 3′ UTR isoforms using distal cleavage and polyadenylation sites (PASs). Methods: Using our recently developed, comprehensive PAS database PolyA_DB, we developed an efficient method to examine APA, named Significance Analysis of Alternative Polyadenylation using RNA-seq (SAAP-RS). We applied this method to study APA in brain cells and neurogenesis. Results: We found that neurons globally express longer 3′ UTRs than other cell types in brain, and microglia and endothelial cells express substantially shorter 3′ UTRs. We show that the 3′ UTR diversity across brain cells can be corroborated with single cell sequencing data. Further analysis of APA regulation of 3′ UTRs during differentiation of embryonic stem cells into neurons indicates that a large fraction of the APA events regulated in neurogenesis are similarly modulated in myogenesis, but to a much greater extent. Conclusion: Together, our data delineate APA profiles in different brain cells and indicate that APA regulation in neurogenesis is largely an augmented process taking place in other types of cell differentiation.  相似文献   

18.
目的 研究严重急性呼吸综合征冠状病毒2(SARS-CoV-2)膜蛋白对宿主细胞mRNA前体(pre-mRNA)3"非翻译区(UTR)加工的影响。方法 本研究以人肺上皮细胞系A549为模型,利用瞬时转染在细胞内过表达SARS-CoV-2膜蛋白;利用RNA-Seq测序技术及生物信息学分析方法,系统性描绘宿主细胞选择性多聚腺苷酸化(alternative polyadenylation,APA)事件;Metascape数据库对发生显著APA变化的基因进行功能富集分析;RT-qPCR验证靶基因3"UTR长度变化;蛋白质免疫印迹(Western blot)检测目的蛋白表达水平。结果 SARS-CoV-2膜蛋白外源表达后宿主细胞内共813个基因发生显著APA变化。GO和KEGG分析显示,差异APA基因广泛参与有丝分裂细胞周期、调节细胞应激等生物过程,涉及病毒感染和蛋白质加工等。从中进一步筛选出AKT1基因,在IGV软件中显示3"UTR延长;RT-qPCR验证AKT1基因的3"UTR长度变化趋势;Western blot结果显示AKT1蛋白磷酸化水平增加。结论 SARS-CoV-2膜蛋白潜在影响宿主pre-mRNA的3"UTR加工,其中参与多种病毒性生物过程的AKT1基因 3"UTR延长,且其编码的蛋白质功能在细胞内被激活。  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号