首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The proteasome is a multicatalytic protease complex present in all eukaryotic cells, which plays a critical role in regulating essential cellular processes. During the immune response to pathogens, stimulation by γ interferon induces the production of a special form of proteasome, the immunoproteasome. Inappropriate increase of proteosomal activity has been linked to inflammatory and autoimmune diseases. Selective inhibition of the immunoproteasome specific LMP7 subunit was shown to block inflammatory cytokine secretion in human PBMC, thus making the immunoproteasome an interesting target to fight autoimmune diseases. This paper describes a method for purification and separation of the 20S immunoproteasomes from the constitutive proteasome, which is ubiquitously present in all cells, based on hydrophobic interaction chromatography. The purified immunoproteasome showed several bands, between 20–30 kDa, when subjected to polyacrylamide gel electrophoresis under denaturing conditions. The purified proteasome complexes had a molecular mass of approximately 700 kDa as estimated by gel filtration. Identification of the catalytic subunits in the immunoproteasomes was performed in Western blot with antibodies directed specifically against either the constitutive or the immunoproteasome subunits. The purified immunoproteasome possessed all three protease activities associated with the proteasome complex. LC/MS analysis confirmed the presence of the three immunoproteasome catalytic subunits in the purified immunoproteasome.  相似文献   

2.
The large-conductance, voltage- and Ca2+-gated K+ (BK) channel consists of four α subunits, which form a voltage- and Ca2+-gated channel, and up to four modulatory β subunits. The β1 subunit is expressed in smooth muscle, where it slows BK channel kinetics and shifts the conductance–voltage (G-V) curve to the left at [Ca2+] > 2 µM. In addition to the six transmembrane (TM) helices, S1–S6, conserved in all voltage-dependent K+ channels, BK α has a unique seventh TM helix, S0, which may contribute to the unusual rightward shift in the G-V curve of BK α in the absence of β1 and to a leftward shift in its presence. Such a role is supported by the close proximity of S0 to S3 and S4 in the voltage-sensing domain. Furthermore, on the extracellular side of the membrane, one of the two TM helices of β1, TM2, is adjacent to S0. We have now analyzed induced disulfide bond formation between substituted Cys residues on the cytoplasmic side of the membrane. There, in contrast, S0 is closest to the S2–S3 loop, from which position it is displaced on the addition of β1. The cytoplasmic ends of β1 TM1 and TM2 are adjacent and are located between the S2–S3 loop of one α subunit and S1 of a neighboring α subunit and are not adjacent to S0; i.e., S0 and TM2 have different trajectories through the membrane. In the absence of β1, 70% of disulfide bonding of W43C (S0) and L175C (S2–S3) has no effect on V50 for activation, implying that the cytoplasmic end of S0 and the S2–S3 loop move in concert, if at all, during activation. Otherwise, linking them together in one state would obstruct the transition to the other state, which would certainly change V50.  相似文献   

3.
This work describes the karyotype and chromosomal location of the ribosomal DNA (rDNA) of Pecten maximus and Mimachlamys varia, two commercial scallop species from Europe. According to the chromosome centromeric index values found, the karyotype of P. maximus is composed of 1 metacentric, 2 metacentric–submetacentric, 1 telocentric–subtelocentric and 15 telocentric pairs, and that of M. varia of 4 metacentric, 2 subtelocentric–submetacentric, 9 subtelocentric, 3 subtelocentric–telocentric and 1 telocentric–subtelocentric pairs. In P. maximus, 18S-28S rDNA was located by FISH on a metacentric–submetacentric pair, and in M. varia on a subtelocentric–submetacentric pair using both silver staining and FISH. PCR amplification of the 5S rDNA unit yielded a single product of about 460 bp (P. maximus) and 450 bp (M. varia), that used as probe revealed a 5S rDNA site on a telocentric pair in P. maximus and a subtelocentric pair in M. varia. Two-color FISH or sequential silver staining of 5S rDNA-FISH-metaphases corroborated that the two gene families are located on different chromosomes in both species. A comparative analysis of the data allowed the inference of karyotypic relationships within scallops.  相似文献   

4.
In the past five years, there have been a series of papers in the journal Evolution debating the relative significance of two theories of evolution, a neo-Fisherian and a neo-Wrightian theory, where the neo-Fisherians make explicit appeal to parsimony. My aim in this paper is to determine how we can make sense of such an appeal. One interpretation of parsimony takes it that a theory that contains fewer entities or processes, (however we demarcate these) is more parsimonious. On the account that I defend here, parsimony is a ‘local’ virtue. Scientists’ appeals to parsimony are not necessarily an appeal to a theory’s simplicity in the sense of it’s positing fewer mechanisms. Rather, parsimony may be proxy for greater probability or likelihood. I argue that the neo-Fisherians appeal is best understood on this interpretation. And indeed, if we interpret parsimony as either prior probability or likelihood, then we can make better sense of Coyne et al. argument that Wright’s three phase process operates relatively infrequently.  相似文献   

5.
As the leading source of antibiotics, Streptomyces species are the subject of widespread investigation. Many approaches have been tried to aid in the classification of Streptomyces isolates to the genus, species, and strain levels. Genetic methods are more rapid and convenient than classification methods based on phenotypic characteristics, but a method that is universal in detecting all Streptomyces yet selective in detecting only Streptomyces is needed. The highly conserved nature of the 16S rRNA gene (16S rDNA) combined with the need to discriminate between closely related strains results in analyses of ribosomal intergenic spacer (RIS) regions being more productive than analyses of 16S rRNA genes. PCR primers were designed to amplify the RIS region as well as a sufficient length of the 16S rRNA gene to enable phylogenetic analyses of Streptomyces. Improved selectivity and specificity for the amplification of RIS sequences from Streptomyces with environmental samples was demonstrated. The use of RIS–PCR and denaturing gradient gel electrophoresis (DGGE) was shown to be a convenient means to obtain unique genetic “fingerprints” of Streptomyces cultures allowing them to be accurately identified at species, and even strain classification levels. These RIS–PCR and DGGE approaches show potential for the rapid characterization of environmental Streptomyces populations.  相似文献   

6.
The DEAE-cellulose-purified 4 S form of the rat liver glucocorticoid receptor can associate with cytosolic factors, as evidenced by an alteration of the sedimentation value of the 7–8 S form. On the basis of sedimentation profile, this form is indistinguishable from the activated, low-salt 7–8 S form isolated from rat liver cytosol. In addition, both the endogenous and reconstituted 7–8 S receptor can bind DNA as the 7–8 S form. In keeping with our reports that the endogenous form of the 7–8 S receptor is sensitive to RNAase digestion, treatment of the cytosol with RNAase prior to mixing with the 4 S receptor prevents the formation of the 7–8 S material. Moreover, warming the cytosol to 50°C prior to mixing with the 4 S receptor also eliminates the ability to form the heavier material. Since RNA is heat-stable, this suggests that other factors may be involved. Treatment of the cytosol with N-ethylmaleimide, a reagent reported to be specific for sulfhydryl groups, also eliminates 7–8 S generating ability. These observations suggest that a protein may be a component of the 7–8 S generating material. This is substantiated by the observation that trypsin or chymotrypsin treatment of the cytosol mitigates the ability of the cytosol to form the 7–8 S material and results in the appearance of a form of the receptor that sediments at approximately 6 S. Protease treatment of partially purified material eliminates the 7–8 S generating activity entirely. We conclude that the 7–8 S form of the receptor can be reconstituted from the 4 S receptor via association with at least two other cytosolic factors, a protein and an RNA.  相似文献   

7.
Precise regulation of the intracellular concentration of chloride [Cl?]i is necessary for proper cell volume regulation, transepithelial transport, and GABA neurotransmission. The Na–K–2Cl (NKCCs) and K–Cl (KCCs) cotransporters, related SLC12A transporters mediating cellular chloride influx and efflux, respectively, are key determinants of [Cl?]i in numerous cell types, including red blood cells, epithelial cells, and neurons. A common “chloride/volume-sensitive kinase”, or related system of kinases, has long been hypothesized to mediate the reciprocal but coordinated phosphoregulation of the NKCCs and the KCCs, but the identity of these kinase(s) has remained unknown. Recent evidence suggests that the WNK (with no lysine = K) serine–threonine kinases directly or indirectly via the downstream Ste20-type kinases SPAK/OSR1, are critical components of this signaling pathway. Hypertonic stress (cell shrinkage), and possibly decreased [Cl?]i, triggers the phosphorylation and activation of specific WNKs, promoting NKCC activation and KCC inhibition via net transporter phosphorylation. Silencing WNK kinase activity can promote NKCC inhibition and KCC activation via net transporter dephosphorylation, revealing a dynamic ability of the WNKs to modulate [Cl?]. This pathway is essential for the defense of cell volume during osmotic perturbation, coordination of epithelial transport, and gating of sensory information in the peripheral system. Commiserate with their importance in serving these critical roles in humans, mutations in WNKs underlie two different Mendelian diseases, pseudohypoaldosteronism type II (an inherited form of salt-sensitive hypertension), and hereditary sensory and autonomic neuropathy type 2. WNKs also regulate ion transport in lower multicellular organisms, including Caenorhabditis elegans, suggesting that their functions are evolutionarily-conserved. An increased understanding of how the WNKs regulate the Na–K–2Cl and K–Cl cotransporters may provide novel opportunities for the selective modulation of these transporters, with ramifications for common human diseases like hypertension, sickle cell disease, neuropathic pain, and epilepsy.  相似文献   

8.
I use some recent formal work on measuring causation to explore a suggestion by James Woodward: that the notion of causal specificity can clarify the distinction in biology between permissive and instructive causes. This distinction arises when a complex developmental process, such as the formation of an entire body part, can be triggered by a simple switch, such as the presence of particular protein. In such cases, the protein is said to merely induce or "permit" the developmental process, whilst the causal "instructions" for guiding that process are already prefigured within the cells. I construct a novel model that expresses in a simple and tractable way the relevant causal structure of biological development and then use a measure of causal specificity to analyse the model. I show that the permissive-instructive distinction cannot be captured by simply contrasting the specificity of two causes as Woodward proposes, and instead introduce an alternative, hierarchical approach to analysing the interaction between two causes. The resulting analysis highlights the importance of focusing on gene regulation, rather than just the coding regions, when analysing the distinctive causal power of genes.  相似文献   

9.
10.
16S–23S rRNA internally transcribed spacer (ITS) sequences from 53 Frankia strains were sequenced and sized from polymerase chain reaction amplification products and compiled with 14 selected 16S–23S ITS sequences from public database. Frankia genomes included two to three ITS copies lacking length polymorphism except for nine strains. No tRNA gene was encountered in this region. Frankia strains exhibited various lengths (369 to 452 nt) and a wide range of sequence similarity (35–100%) in the ITS region. The average pairwise distance varied from 0.368 (clusters 1 and 2) to 0.964 (clusters 3 and 4) and was 0.397, 0.138, 0.129, and 0.016, respectively, for cluster 4 (saprophytic non-infective/non-effective), clusters 1 and 3 (facultative symbiotic), and cluster 2 (obligate symbiotic). This suggests a gradual erosion of Frankia diversity concomitantly with a shift from saprophytic non-infective/non-effective to facultative and symbiotic lifestyle. Comparative sequence analyses of the 16S–23S rRNA intergenic spacer region of Frankia strains are not useful to assign them to their respective cluster or host infection group. Accurate assignment required the inclusion of the adjacent 16S and 23S rRNA gene fragments.  相似文献   

11.
Summary The nucleotide sequence of a spacer region between rice 17S and 25S rRNA genes (rDNAs) has been determined. The coding regions for the mature 17S, 5.8S and 25S rRNAs were identified by sequencing terminal regions of these rRNAs. The first internal transcribed spacer (ITS1), between 17S and 5.8S rDNAs, is 194–195 bp long. The second internal transcribed spacer (ITS2), between 5.8S and 25S rDNAs, is 233 bp long. Both spacers are very rich in G+C, 72.7% for ITS1 and 77.3% for ITS2. The 5.8S rDNA is 163–164 bp long and similar in primary and secondary structures to other eukaryotic 5.8S rDNAs. The 5.8S rDNA is capable of interacting with the 5′ terminal region of 25S rDNA.  相似文献   

12.
The sequence of the ribosomal spacer region of soybean chloroplast DNA including the 3 end of the 16S rRNA gene, the tRNAAla and tRNAIle genes (but not their introns), the three intergenic regions and the 5 end of the 23S rRNA gene, has been determined. This sequence has been compared to corresponding regions of other angiosperm chloroplast DNAs. Secondary structure models are proposed for the entirety of the intergenic regions a, b and c and for the flanking rRNA regions. A model for a common secondary structure of the ribosomal spacer intergenic regions from chloroplasts of higher plants is proposed, which is supported by comparative evidence.  相似文献   

13.
Summary The nucleotide sequence of a spacer region between 16S and 23S rRNA genes from soybean chloroplasts has been determined. The spacer region is over 3000 bp long and contains two tRNA genes, coding for rRNAIle and tRNAAla which contain intervening sequences of 953 and 811 base pairs respectively. There is a strong homology between the two introns suggesting that they have a common origin. These spacer tRNAs are synthesized as part of a kb precursor molecule containing 16S and 23S rRNA sequences.  相似文献   

14.
Ribotoxins are potent inhibitors of protein biosynthesis and inactivate ribosomes from a variety of organisms. The ribotoxin α-sarcin cleaves the large 23S ribosomal RNA (rRNA) at the universally conserved sarcin–ricin loop (SRL) leading to complete inactivation of the ribosome and cellular death. The SRL interacts with translation factors that hydrolyze GTP, and it is important for their binding to the ribosome, but its precise role is not yet understood. We studied the effect of α-sarcin on defined steps of translation by the bacterial ribosome. α-Sarcin-treated ribosomes showed no defects in mRNA and tRNA binding, peptide-bond formation and sparsomycin-dependent translocation. Cleavage of SRL slightly affected binding of elongation factor Tu ternary complex (EF-Tu•GTP•tRNA) to the ribosome. In contrast, the activity of elongation factor G (EF-G) was strongly impaired in α-sarcin-treated ribosomes. Importantly, cleavage of SRL inhibited EF-G binding, and consequently GTP hydrolysis and mRNA–tRNA translocation. These results suggest that the SRL is more critical in EF-G than ternary complex binding to the ribosome implicating different requirements in this region of the ribosome during protein elongation.  相似文献   

15.
Supramolecular organization of enzymes is proposed to orchestrate metabolic complexity and help channel intermediates in different pathways. Phenylpropanoid metabolism has to direct up to 30% of the carbon fixed by plants to the biosynthesis of lignin precursors. Effective coupling of the enzymes in the pathway thus seems to be required. Subcellular localization, mobility, protein–protein, and protein–membrane interactions of four consecutive enzymes around the main branch point leading to lignin precursors was investigated in leaf tissues of Nicotiana benthamiana and cells of Arabidopsis thaliana. CYP73A5 and CYP98A3, the two Arabidopsis cytochrome P450s (P450s) catalyzing para- and meta-hydroxylations of the phenolic ring of monolignols were found to colocalize in the endoplasmic reticulum (ER) and to form homo- and heteromers. They moved along with the fast remodeling plant ER, but their lateral diffusion on the ER surface was restricted, likely due to association with other ER proteins. The connecting soluble enzyme hydroxycinnamoyltransferase (HCT), was found partially associated with the ER. Both HCT and the 4-coumaroyl-CoA ligase relocalized closer to the membrane upon P450 expression. Fluorescence lifetime imaging microscopy supports P450 colocalization and interaction with the soluble proteins, enhanced by the expression of the partner proteins. Protein relocalization was further enhanced in tissues undergoing wound repair. CYP98A3 was the most effective in driving protein association.  相似文献   

16.
Fluorescence in situ hybridization (FISH) was employed on mitotic metaphase chromosome preparations of five Asian Pinus species: Pinus tabuliformis, Pinus yunnanensis, Pinus densata, Pinus massoniana and Pinus merkusii, using simultaneously DNA probes of the 18S rRNA gene and the 5S rRNA gene including the non-transcribed spacer sequences. The number and location of 18S rDNA sites varied markedly (5-10 pairs of strong signals) among the five pines. A maximum of 20 major 18S rDNA sites was observed in the diploid genome (2n = 24) of P. massoniana. The 5S rDNA FISH pattern was less variable, with one major site and one minor site commonly observed in each species. The differentiation of rDNA sites on chromosomes among the five pines correlates well with their phylogenic positions in Pinus as reconstructed from other molecular data. P. densata, a species of hybrid origin, resembles its parents ( P. tabuliformis and P. yunnanensis), including some components characteristic of each parent in its pattern. However, the species is unique, showing new features resulting possibly from recombination and genome reorganization.  相似文献   

17.
18.
The evolution of the genetic code, with 20 amino acids encoded from the beginning, is analyzed from the viewpoint of codon–anticodon interaction. Imposing a minimum principle for the interaction, in the framework of the so called crystal basis model of the genetic code, we determine the structure of the anticodons in the ancient, archetypal and early genetic codes, that are all reconciled in a unique frame. Most of our results agree with the generally accepted scheme.  相似文献   

19.
We show that the Eigen model and the asexual Wright–Fisher model can be obtained as two different limit cases of a single stochastic model. This result is used to enlighten the mathematical similarities and differences among these two models.  相似文献   

20.
Yeonkyoung Park  Joori Park 《Autophagy》2018,14(6):1079-1081
Many neurodegenerative disorders feature the presence of misfolded polypeptide-containing intracellular inclusion bodies biochemically and morphologically analogous to cellular aggresomes. However, it is largely unknown how misfolded polypeptides form aggresomes and are eventually cleared by the aggresome-macroautophagy/autophagy pathway, so-called aggrephagy. Our recent study revealed that when the ubiquitin-proteasome system is impaired, the accumulated misfolded polypeptides are selectively recognized and transported to the aggresome by a CED complex. This complex is composed of CTIF, originally identified as a specific factor for nuclear cap-binding protein complex (a heterodimer of NCBP1/CBP80 and NCBP2/CBP20)-dependent translation (CT), and its associated factors EEF1A1 and DCTN1. Aggresomal targeting of a misfolded polypeptide via the CED complex is accompanied by CTIF release from the CT complex and thereby inhibits CT efficiency. Therefore, our study provides new mechanistic insights into the crosstalk between translational inhibition and aggresome formation under the influence of a misfolded polypeptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号