首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gaucher disease (GD) is the most common lysosomal storage disorder (LSD) and is divided into three phenotypes, I, II, and III. Type I is the most prevalent form and has its onset in adulthood. The degree of endoplasmic reticulum (ER) stress is one of the factors that determine GD severity. It has recently been reported that antioxidants reduce ER stress and apoptosis by scavenging the oxidants that cause oxidative stress. For this report, we investigated the possibility that catechin can act on type I GD patient cells to alleviate the pathogenic conditions of GD. We treated GD cells with catechin and examined the expression level of GRP78/BiP (an ER stress marker) by western blots and fluorescence microscopy, the proliferation rate of GD cells, and scratch-induced wound healing activity. Our results show that catechin reduces the expression level of GRP78/BiP, leads to cell proliferation rates of GD cells similar levels to normal cells, and improves wound healing activity. We conclude that catechin protects against ER stress in GD cells and catechin-mediated reductions in ER stress may be associated with enhanced cell survival.  相似文献   

2.
Treatment of high-risk neuroblastoma (NB) represents a major challenge in paediatric oncology. Alternative therapeutic strategies include antibodies targeting the disialoganglioside GD(2) , which is expressed at high levels on NB cells, and infusion of donor-derived natural killer (NK) cells. To combine specific antibody-mediated recognition of NB cells with the potent cytotoxic activity of NK cells, here we generated clonal derivatives of the clinically applicable human NK cell line NK-92 that stably express a GD(2) -specific chimeric antigen receptor (CAR) comprising an anti-GD(2) ch14.18 single chain Fv antibody fusion protein with CD3-ζ chain as a signalling moiety. CAR expression by gene-modified NK cells facilitated effective recognition and elimination of established GD(2) expressing NB cells, which were resistant to parental NK-92. In the case of intrinsically NK-sensitive NB cell lines, we observed markedly increased cell killing activity of retargeted NK-92 cells. Enhanced cell killing was strictly dependent on specific recognition of the target antigen and could be blocked by GD(2) -specific antibody or anti-idiotypic antibody occupying the CAR's cell recognition domain. Importantly, strongly enhanced cytotoxicity of the GD(2) -specific NK cells was also found against primary NB cells and GD(2) expressing tumour cells of other origins, demonstrating the potential clinical utility of the retargeted effector cells.  相似文献   

3.
Gaucher disease (GD) is a genetic disease with mutations in the GBA gene that encodes glucocerebrosidase causing complications such as anaemia and bone disease. GD is characterized by accumulation of the sphingolipids (SL) glucosylceramide (GL1), glucosylsphingosine (Lyso‐GL1), sphingosine (Sph) and sphingosine‐1‐phosphate (S1P). These SL are increased in the plasma of GD patients and the associated complications have been attributed to the accumulation of lipids in macrophages. Our recent findings indicated that red blood cells (RBCs) and erythroid progenitors may play an important role in GD pathophysiology. RBCs abnormalities and dyserythropoiesis have been observed in GD patients. Moreover, we showed higher SL levels in the plasma and in RBCs from untreated GD patients compared with controls. In this study, we quantified SL in 16 untreated GD patients and 15 patients treated with enzyme replacement therapy. Our results showed that the treatment significantly decreases SL levels in the plasma and RBCs. The increased SL content in RBCs correlates with abnormal RBC properties and with markers of disease activity. Because RBCs lack glucocerebrosidase activity, we investigated how lipid overload could occur in these cells. Our results suggested that SL overload in RBCs occurs both during erythropoiesis and during its circulation in the plasma.  相似文献   

4.
Gangliosides shed by tumors enhance tumor formation, possibly by suppressing host antitumor immune function, and gangliosides purified from animal tissues and cultured cells inhibit human cellular immune function in vitro. Determination of immunosuppressive activity of highly purified gangliosides, to uncover structure-activity relationships, is therefore important. Here we have studied a series of gangliosides obtained from human tissue and determined their effects on human natural killer (NK) activity. Total gangliosides from human brain tissue were moderately inhibitory; 100 nmol/ml reduced NK activity of human nonadherent PBMC by 43%. The influence of carbohydrate structure upon inhibitory activity was determined by study of eight highly (HPLC) purified individual gangliosides. Of these, we unexpectedly found that the two minor brain gangliosides with the simplest carbohydrate structures, GM2 and GM3, were very active inhibitors (75 and 47%, respectively, at 50 nmol/ml). In contrast, the structurally more complex major species, GM1, GD1a, GD1b, GT1b, and two other minor gangliosides, GD2 and GD3, were inactive. Reduced effector-target binding in a single-cell binding assay by GM2 but not GM3 suggests different mechanisms of inhibition by these two active gangliosides. Since GM2 and GM3 are present in high concentrations in, and are shed by, several common human tumors (e.g., neuroblastoma, melanoma, and glioma), their ability to inhibit NK cytotoxicity supports the hypothesis of a role of shed tumor gangliosides in the enhancement of tumor formation.  相似文献   

5.
Tyrosine kinase Btk is required for NK cell activation   总被引:1,自引:0,他引:1  
Bao Y  Zheng J  Han C  Jin J  Han H  Liu Y  Lau YL  Tu W  Cao X 《The Journal of biological chemistry》2012,287(28):23769-23778
Bruton tyrosine kinase (Btk) is not only critical for B cell development and differentiation but is also involved in the regulation of Toll-like receptor-triggered innate response of macrophages. However, whether Btk is involved in the regulation of natural killer (NK) cell innate function remains unknown. Here, we show that Btk expression is up-regulated during maturation and activation of mouse NK cells. Murine Btk(-/-) NK cells have decreased innate immune responses to the TLR3 ligand, with reduced expressions of IFN-γ, perforin, and granzyme-B and decreased cytotoxic activity. Furthermore, Btk is found to promote TLR3-triggered NK cell activation mainly by activating the NF-κB pathway. Poly(I:C)-induced NK cell-mediated acute hepatitis was observed to be attenuated in Btk(-/-) mice or the mice with in vivo administration of the Btk inhibitor. Correspondingly, liver damage was aggravated in Btk(-/-) mice after the adoptive transfer of Btk(+/+) NK cells, further indicating that Btk-mediated NK cell activation contributes to TLR3-triggered acute liver injury. Importantly, reduced TLR3-triggered activation of human NK cells was observed in Btk-deficient patients with X-linked agammaglobulinemia, as evidenced by the reduced IFN-γ, CD69, and CD107a expression and cytotoxic activity. These results indicate that Btk is required for activation of NK cells, thus providing insight into the physiological significance of Btk in the regulation of immune cell functions and innate inflammatory response.  相似文献   

6.
Lysosomes function as a primary site for catabolism and cellular signaling. These organelles digest a variety of substrates received through endocytosis, secretion and autophagy with the help of resident acid hydrolases. Lysosomal enzymes are folded in the endoplasmic reticulum (ER) and trafficked to lysosomes via Golgi and endocytic routes. The inability of hydrolase trafficking due to mutations or mutations in its receptor or cofactor leads to cargo accumulation (storage) in lysosomes, resulting in lysosome storage disorder (LSD). In Gaucher disease (GD), the lysosomes accumulate glucosylceramide because of low β-glucocerebrosidase (β-GC) activity that causes lysosome enlargement/dysfunction. We hypothesize that improving the trafficking of mutant β-GC to lysosomes may improve the lysosome function in GD. RNAi screen using high throughput based β-GC activity assay followed by reporter trafficking assay utilizing β-GC-mCherry led to the identification of nine potential phosphatases. Depletion of these phosphatases in HeLa cells enhanced the β-GC activity by increasing the folding and trafficking of Gaucher mutants to the lysosomes. Consistently, the lysosomes in primary fibroblasts from GD patients restored their β-GC activity upon the knockdown of these phosphatases. Thus, these studies provide evidence that altering phosphatome activity is an alternative therapeutic strategy to restore the lysosome function in GD.  相似文献   

7.
The glycosylation of recombinant β-glucocerebrosidase, and in particular the exposure of mannose residues, has been shown to be a key factor in the success of ERT (enzyme replacement therapy) for the treatment of GD (Gaucher disease). Macrophages, the target cells in GD, internalize β-glucocerebrosidase through MRs (mannose receptors). Three enzymes are commercially available for the treatment of GD by ERT. Taliglucerase alfa, imiglucerase and velaglucerase alfa are each produced in different cell systems and undergo various post-translational or post-production glycosylation modifications to expose their mannose residues. This is the first study in which the glycosylation profiles of the three enzymes are compared, using the same methodology and the effect on functionality and cellular uptake is evaluated. While the major differences in glycosylation profiles reside in the variation of terminal residues and mannose chain length, the enzymatic activity and stability are not affected by these differences. Furthermore, the cellular uptake and in-cell stability in rat and human macrophages are similar. Finally, in vivo studies to evaluate the uptake into target organs also show similar results for all three enzymes. These results indicate that the variations of glycosylation between the three regulatory-approved β-glucocerebrosidase enzymes have no effect on their function or distribution.  相似文献   

8.
The huKS-IL2 immunocytokine (IC) consists of IL2 fused to a mAb against EpCAM, while the hu14.18-IL2 IC recognizes the GD2 disialoganglioside. They are under evaluation for treatment of EpCAM(+) (ovarian) and GD2(+) (neuroblastoma and melanoma) malignancies because of their proven ability to enhance tumor cell killing by antibody-dependent cell-mediated cytotoxicity (ADCC) and by antitumor cytotoxic T cells. Here, we demonstrate that huKS-IL2 and hu14.18-IL2 bind to tumor cells via their antibody components and increase adhesion and activating immune synapse (AIS) formation with NK cells by engaging the immune cells' IL-2 receptors (IL2R). The NK leukemia cell line, NKL (which expresses high affinity IL2Rs), shows fivefold increase in binding to tumor targets when treated with IC compared to matching controls. This increase in binding is effectively inhibited by blocking antibodies against CD25, the α-chain of the IL2R. NK cells isolated from the peritoneal environment of ovarian cancer patients, known to be impaired in mediating ADCC, bind to huKS-IL2 via CD25. The increased binding between tumor and effector cells via ICs is due to the formation of AIS that are characterized by the simultaneous polarization of LFA-1, CD2 and F-actin at the cellular interface. AIS formation of peritoneal NK and NKL cells is inhibited by anti-CD25 blocking antibody and is 50-200% higher with IC versus the parent antibody. These findings demonstrate that the IL-2 component of the IC allows IL2Rs to function not only as receptors for this cytokine but also as facilitators of peritoneal NK cell binding to IC-coated tumor cells.  相似文献   

9.
Gaucher disease (GD) results from inherited mutations in the lysosomal enzyme β-glucocerobrosidase (GCase). Currently available treatment options for Type 1 GD are not efficacious for treating neuronopathic Type 2 and 3 GD due to their inability to cross the blood-brain barrier. In an effort to identify small molecules which could be optimized for CNS penetration we identified tamoxifen from a high throughput phenotypic screen on Type 2 GD patient-derived fibroblasts which reversed the disease phenotype. Structure activity studies around this scaffold led to novel molecules that displayed improved potency, efficacy and reduced estrogenic/antiestrogenic activity compared to the original hits. Here we present the design, synthesis and structure activity relationships that led to the lead molecule Compound 31.  相似文献   

10.
Sleep is considered an important predictor of immunity. A lack of sleep may reduce immunity, which increases susceptibility to any type of infection. Moreover, sleep deprivation in humans produces changes in both, the percent of circulating immune cells (T cells and NK cells) and cytokine levels (IL-1, IFNγ, TNΦ-αα, IL-6 and IL-17). The aim of our study was to investigate whether sleep deprivation produces deregulation on immune variables during the immune response generated against the helminth parasite Trichinella spiralis. Because sleep deprivation is stressful per se, we designed another experiments to compared stress alone (consisting in movement restriction and single housing) with sleep deprivation, in both control (uninfected) and experimental (infected) rats. Our results demonstrate that the sleep deprivation and stress have a differential effect in mesenteric lymph nodes (MLN) and spleen. In uninfected rats sleep deprivation alone produces an increase in natural killer cells (NK+) and B cells (CD45+), accompanied by a decrease in cytotoxic T cells (CD3+CD8+) in spleen; while, in MLN, produces only an increase in natural killer cells (NK+). Both, SD and stress, produce an increased percentage of total T cells (CD3+) in spleen. In the MLN both are also associated to an increase in cytotoxic T cells (CD3+CD8+) and B cells (CD45+). In the spleens of parasitized rats, cell populations did not change. In spleens of both, sleep-deprived and stressed infected rats, we observed an increase in B cells (CD45+). In infected rats, sleep deprivation alone produced an increase in NK cells (NK+). In mesenteric node cell populations of parasitized rats, we observed a decrease in NK cells and an increase in T helper (CD4+) cells in both SD and stressed rats. Rats that were only subjected to stress showed a decrease in B cells (CD45+). These findings suggest that the immune response generated against infection caused by T. spiralis is affected when the sleep pattern is disrupted. These results support the notion that sleep is a fundamental process for an adequate and strong immune response generated against this parasite.  相似文献   

11.
Close relationships have been demonstrated between adipose tissue and the inflammatory/immune system. Furthermore, obesity is increasingly considered as a state of chronic inflammation. Cytofluorometric analysis reveals the presence of significant levels of lymphocytes in the stroma-vascular fraction of white adipose tissues. In epididymal (EPI) fat, lymphocytes display an "ancestral" immune system phenotype (up to 70% of natural killer (NK), gammadelta+ T and NKT cells among all lymphocytes) whereas the inguinal (ING) immune system presents more adaptive characteristics (high levels of alphabeta+ T and B cells). The percentage of NK cells in EPI fat was decreased in obese mice fed with a high-fat diet, whereas gammadelta positive cells were significantly increased in ING fat. These data support the notion that adipose tissue may elaborate immunological mechanisms to regulate its functions which might be altered in obesity.  相似文献   

12.
The GD2 ganglioside expressed on neuroectodermal tumor cells is weakly immunogenic in tumor-bearing patients and induces predominantly IgM antibody responses in the immunized host. Using a syngeneic mouse challenge model with GD2-expressing NXS2 neuroblastoma, we investigated novel strategies for augmenting the effector function of GD2-specific antibody responses induced by a mimotope vaccine. We demonstrated that immunization of A/J mice with DNA vaccine expressing the 47-LDA mimotope of GD2 in combination with IL-15 and IL-21 genes enhanced the induction of GD2 cross-reactive IgG2 antibody responses that exhibited cytolytic activity against NXS2 cells. The combined immunization regimen delivered 1 day after tumor challenge inhibited subcutaneous (s.c.) growth of NXS2 neuroblastoma in A/J mice. The vaccine efficacy was reduced after depletion of NK cells as well as CD4+ and CD8+ T lymphocytes suggesting involvement of innate and adaptive immune responses in mediating the antitumor activity in vivo. CD8+ T cells isolated from the immunized and cured mice were cytotoxic against syngeneic neuroblastoma cells but not against allogeneic EL4 lymphoma, and exhibited antitumor activity after adoptive transfer in NXS2-challenged mice. We also demonstrated that coimmunization of NXS2-challenged mice with the IL-15 and IL-21 gene combination resulted in enhanced CD8+ T cell function that was partially independent of CD4+ T cell help in inhibiting tumor growth. This study is the first demonstration that the mimotope vaccine of a weakly immunogenic carbohydrate antigen in combination with plasmid-derived IL-15 and IL-21 cytokines induces both innate and adaptive arms of the immune system leading to the generation of effective protection against neuroblastoma challenge. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. This work was supported by the Roswell Park Alliance Foundation, funds to commemorate Dr. Goro Chihara’s research activity, and by a research grant R21 AI060375 from the National Institutes of Health.  相似文献   

13.
Murine bone marrow (BM) cells regulate a variety of immune responses via an endogenous natural suppressor (NS) activity. We demonstrate that BM-derived NS activity resides in an enriched fraction of large, low-density cells which have a high proliferative rate. Complement-dependent lysis of BM cells by antibody directed against markers of Veto and NK/LAK cells had no effect on NS activity. The BM of SCID mice and their littermate C.B-17 possessed normal NS activity. Conversely, the BM of NK-deficient C57 beige mice displayed reduced NS activity as compared to normal C57 black mice. Long-term BM cultures (LTBMC) generated in medium containing supernatants of Con A-stimulated (CAS) rat spleen cells resulted in the emergence of a population of cells which possessed NS activity greater than that of fresh BM cells. The LTBMC were also potent effectors of NK activity, as compared to fresh BM, which had little NK activity. Thus, while NS, NK/LAK, and Veto cells are all nonspecific effectors of immune suppression, the exact relationship between them is not clear.  相似文献   

14.
Targeted monoclonal antibodies (mAb) can be used therapeutically for tumors with identifiable antigens such as disialoganglioside GD2, expressed on neuroblastoma and melanoma tumors. Anti-GD2 mAbs (αGD2) can provide clinical benefit in patients with neuroblastoma. An important mechanism of mAb therapy is antibody-dependent cellular cytotoxicity (ADCC). Combinatorial therapeutic strategies can dramatically increase the anti-tumor response elicited by mAbs. We combined a novel αGD2 mAb, hu14.18K322A, with an immunostimulatory regimen of agonist CD40 mAb and class B CpG-ODN 1826 (CpG). Combination immunotherapy was more effective than the single therapeutic components in a syngeneic model of GD2-expressing B16 melanoma with minimal tumor burden. NK cell depletion in B6 mice showed that NK cells were required for the anti-tumor effect; however, anti-tumor responses were also observed in tumor-bearing SCID/beige mice. Thus, NK cell cytotoxicity did not appear to be essential. Peritoneal macrophages from anti-CD40 + CpG-treated mice inhibited tumor cells in vitro in an hu14.18K322A antibody-dependent manner. These data highlight the importance of myeloid cells as potential effectors in immunotherapy regimens utilizing tumor-specific mAb and suggest that further studies are needed to investigate the therapeutic potential of activated myeloid cells and their interaction with NK cells.  相似文献   

15.
Although the means by which NK cells may contribute to anti viral defense are still incompletely understood, various studies merge to a better comprehension of pathways that mediate NK cell activation (NK cell mediated cytotoxic activity and cytokine production) and their implications during the immune response towards a variety of viruses. Characterization of a specific expression pattern of ligands for NK receptors on virally infected cells and consequent modulation of NK cell activity have provided new insights in the field. A major break through to a direct evidence of a role for NK cells and NK cell receptors in immune protection against viral infection, was the recent implication of the murine activating Ly49H receptors in immune protection against MCMV infection. Although much remains to be learned concerning implication of NK cells in HIV infection, various reports have documented alteration in NK cell function and numbers during the course of HIV infection or treatment of AIDS. This review will focus on the current knowledge about the factors which might influence NK cell activation during various viral challenge and an emerging view of their alteration during HIV infection.  相似文献   

16.
The importance of innate immune cells in HIV-1 pathogenesis and protection has been highlighted by the role of natural killer (NK) cells in the containment of viral replication. Use of peripheral blood mononuclear cells (PBMC) in immunologic studies provides both HIV-1 target cells (ie. CD4+ T cells), as well as anti-HIV-1 effector cells, such as NK cells. In this study, NK and other immune cell populations were analyzed in HIV-negative donor PBMC for an impact on the anti-HIV activity of polyclonal and monoclonal antibodies. NK cell percentages were significantly higher in donor PBMC that supported lower levels of viral replication. While the percentage of NK cells was not directly associated with neutralization titers, NK cell-depletion significantly diminished the antiviral antibody activity by up to three logs, and polymorphisms in NK killer immunoglobulin receptor (KIR) and FcγRIIIa alleles appear to be associated with this affect. These findings demonstrate that NK cells and NK cell receptor polymorphisms may influence assessment of traditional HIV-1 neutralization in a platform where antibody is continuously present. This format appears to simultaneously assess conventional entry inhibition (neutralization) and non-neutralizing antibody-dependent HIV inhibition, which may provide the opportunity to delineate the dominant antibody function(s) in polyclonal vaccine responses.  相似文献   

17.
18.
Kim SJ  Kang S  Kim JB 《Gene》2012,504(2):156-159
Gaucher disease (GD) is the most prevalent lysosomal storage disorder caused by an inherited deficiency of glucocerebrosidase. In the present study, we aimed to determine whether myxobacterial metabolites exhibit a potential therapeutic effect in the cells from a patient with type I GD. We screened 288 bioactive compounds of myxobacteria in the skin fibroblasts from a patient with type I GD. MTT assays were performed to determine their effects on cell viability. The expression levels of Bcl-2-associated X protein (Bax), ATP-citrate synthase (ATP-CS), E3-binding protein (E3BP), and acetyl-coenzyme A acetyltransferase 1 (ACAT1) were determined by western blotting to understand the molecular mechanisms of myxobacterial metabolites in cells. Thin-layer chromatography (TLC) was carried out to measure changes in glucosylceramide levels in the cultured fibroblasts. This screening process identified 4 compounds that increased cell viability more than 1.45 times. After exposure to these compounds, the expression level of Bax decreased, whereas those of ATP-CS, E3BP, and ACAT1 increased. TLC revealed reduced amounts of intracellular glucosylceramides in patient cells. Here we suggest that myxobacterial metabolites can relieve the stress due to glucosylceramide accumulation, and that it may be utilized as a new therapeutic approach.  相似文献   

19.
Alli RS  Khar A 《FEBS letters》2004,559(1-3):71-76
Dendritic cells (DCs) are known to modulate immune response by activating effector cells of both the innate and the adaptive immune system. In the present study, we demonstrate that co-culture of DCs with paraformaldehyde-fixed tumor cells augments the secretion of interleukin (IL)-12 by DCs and these activated DCs upon co-culture with naive NK cells enhance the cytolytic activity of NK cells against NK-sensitive target YAC-1. Similarly, DCs isolated from tumor-bearing animals also activated NK cells in vitro. For efficient activation of NK cells, the ratio of activated DCs to NK cells is crucial. Addition of anti-IL-12 antibody to the culture system completely abolished activation of NK cells by DCs, suggesting that IL-12 secreted by DCs is an essential factor in NK cell activation. Adoptive transfer of DCs isolated from tumor-bearing animals into normal rats also induced activation of NK cells in normal animals.  相似文献   

20.
Laroni A  Gandhi R  Beynon V  Weiner HL 《PloS one》2011,6(10):e26173
Interleukin-27 (IL-27) is a cytokine with multiple roles in regulating the immune response, but its effect on human CD56(bright) and CD56(dim) NK cell subsets is unknown. NK cell subsets interact with other components of the immune system, leading to cytotoxicity or immunoregulation depending on stimulating factors. We found that IL-27 treatment results in increased IL-10 and IFN-γ expression, increased viability and decreased proliferation in both CD56(bright) and CD56(dim) NK cell subsets. More importantly, IL-27 treatment imparts regulatory activity to CD56(bright) NK cells, which mediates its suppressive function on T cells in a contact-dependent manner. There is growing evidence that CD56(bright) NK cell-mediated immunoregulation plays an important role in the control of autoimmunity. Thus, understanding the role of IL-27 in NK cell function has important implications for treatment of autoimmune disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号