首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glaucoma is one of the major causes of blindness worldwide with characteristic optic disc changes and elevated intraocular pressure. It is subcategorized into Primary Open Angle Glaucoma (POAG) and Juvenile Open Angle Glaucoma (JOAG) depending upon age of the disease onset. Myocilin (MYOC) is the frequently mutated gene in familial cases of glaucoma. MYOC mutations show variable phenotype and penetrance. This study was aimed to identify disease causing mutation in 8 affected of a consanguineous family diagnosed with severe form of Juvenile Open Angle Glaucoma. Homozygosity mapping with four microsatellite markers and subsequent direct sequencing of MYOC revealed a novel heterozygous transition c.1130 C>G, substituting Threonine in to Arginine at codon 377 (p.Thr377Arg) of MYOC. This mutation was segregating with phenotype in all affected and was not found in control subjects. Ophthalmological findings revealed JOAG with severe and rapidly progressive phenotype. The age of onset was in the first decade of life and maximum Intra Ocular Pressure (IOP) recorded was 25 mm Hg. Bioinformatic tools predicted C to G transition at c.1130 as pathogenic and no structural changes were predicted in protein. This is the first report of novel MYOC mutation from Pakistan; segregating as autosomal dominant trait in large family diagnosed with JOAG. Identification of novel disease causing allele in MYOC indicates genetic heterogeneity of the population. This finding will help to provide genetic counseling to the affected family and carriers of this mutation may be advised for early therapeutic intervention to avoid irreversible visual loss.  相似文献   

2.
Glaucoma is a leading cause of blindness worldwide. The disease is characterized by a degeneration of the optic nerve, which is usually associated with elevated intraocular pressure. The common form of adult-onset primary open-angle glaucoma is inherited as a complex trait, whereas the rarer early-onset juvenile open-angle glaucoma (JOAG) exhibits autosomal dominant inheritance. Of all cases of JOAG, approximately 10%-20% are caused by mutations in the myocilin gene. We have identified 25 pedigrees that are affected with typical JOAG and that demonstrate autosomal dominant inheritance. We sequenced the myocilin gene in probands from each family and found mutations in 8% of this population. To identify novel genes responsible for JOAG, we used families that did not have myocilin mutations for a genomewide screen. Markers located on chromosomes 9q22 and 20p12 showed evidence for linkage, identifying two novel loci for early-onset open-angle glaucoma.  相似文献   

3.
MYOC gene variants are associated with autosomal dominant primary open angle glaucoma (POAG). In this study, we describe a previously unreported MYOC variant segregating with a POAG phenotype in an Australian family. Two individuals affected with POAG and three unaffected individuals from the same family were recruited through the Australian and New Zealand Registry of Advanced Glaucoma (ANZRAG). Direct sequencing of all MYOC coding exons identified the novel heterozygous single nucleotide transition MYOC:c.1119G>A, p.(Trp373*), predicted to encode an aberrant truncated MYOC protein in two affected siblings. Two unaffected siblings and an unaffected niece were negative for the MYOC sequence variant.  相似文献   

4.
5.
A six-generation Chinese family with autosomal dominant retinitis pigmentosa (adRP) was identified and characterized. Genome-wide linkage analysis linked the family to markers D19S601 to D19S605, which span the PRPF31 gene on chromosome 19q13.33-13.43 (RP11) (LOD = 5.03). Direct DNA sequence analysis identified a novel splicing mutation (IVS1+1G>T) in affected family members and carriers, but not in unaffected family members and 200 normal controls. The splicing mutation occurs at the splicing donor of intron 1. Real time PCR with lymphoblastoid RNA samples from family members showed that in comparison to normal family members, the splicing mutation reduced the expression level of the PRPF31 mRNA by 57% in symptomatic patients and by 28% in clinically asymptomatic carriers. Our studies identify a novel splicing mutation in PRPF31 associated with adRP and suggest that the penetrance of RP11 mutations may be correlated with the expression level of the PRPF31 mRNA.  相似文献   

6.
Renal hypouricemia (RHUC), as an infrequent hereditary disease, is associated with severe complications such as exercise-induced acute renal failure (EIARF). Loss-of-function mutations in urate transporter gene URAT1 (Type 1) and in glucose transporter gene GLUT9 (Type 2) are major causes of this disorder. In this study, URAT1 and GLUT9 were screened in two uncorrelated families from mainland China and a total of five mutations were identified in exons, including two novel heterozygous URAT1 mutations. In four members of the first family, c.151delG (p.A51fsX64) in exon 1 was detected, which resulted in a frameshift and truncated the original 553-residue-protein to 63 amino acid protein. A missense mutation c.C1546A (p.P516T) in exon 9 in GLUT9 was revealed in the second family, which caused a functional protein substitution at codon 516. These two novel mutations were neither identified in the subsequent scanning of 200 ethnically matched healthy control subjects with normal serum UA level nor in a 1000 genome project database. Thus our report identifies two novel loss-of-function mutations (c.151delG in URAT1 and p.P516T in GLUT9) which cause RHUC and renal dysfunction in two independent RHUC pedigrees.  相似文献   

7.
8.
Ellis–van Creveld syndrome (EvC) is a rare autosomal recessive skeletal dysplasia characterized by short limbs, short ribs, postaxial polydactyly, and dysplastic nails and teeth. It is caused by biallelic mutations in the EVC or EVC2 gene. Here, we identified a novel nonsense mutation p.W828X (c.2484G>A) in exon 14 and a recurrent nonsense mutation p. R399X (c.1195C>T) in exon 10 of EVC2 gene in a Chinese boy with EvC. Identification of a novel genotype in EvC will provide clues to the phenotype–genotype relations and may assist not only in the clinical diagnosis of EvC but also in the interpretation of genetic information used for prenatal diagnosis and genetic counseling.  相似文献   

9.
Mutations in the GJB2 gene are the most common cause of nonsyndromic autosomal recessive sensorineural hearing loss (HL). A few mutations in GJB2 have also been reported to cause dominant nonsyndromic HL. Here we report a large inbred family including two individuals with nonsyndromic sensorineural hearing loss. A dominant GJB2 mutation, c.551G>A (p.R184Q), was detected in the proband, yet his parents were negative for the mutation. The second affected person had heterozygous c.35delG mutation, which was inherited from his father. Large deletions of the GJB6 gene were not detected in this family. This study highlights the importance of mutation analysis in all affected cases within a pedigree.  相似文献   

10.
11.
Congenital fibrosis of the extraocular muscles type 1 (CFEOM1) is an autosomal dominant strabismus disorder associated with defects of the oculomotor nerve. In this study, we identified a Chinese family with CFEOM1 for four generations. Linkage analysis mapped the causative gene of the family to 12q with a Lod score 2.1 for polymorphic marker D12S85, where KIF21A is located. Direct DNA sequence analysis identified a 2860C→T change in exon 21, resulting in a tryptophan substitution for arginine in codon 954 of KIF21A. SSCP (single-stranded conformational polymorphism) analysis showed that mutation p.Arg954Trp of KIF21A co-segregated with the affected members, but was absent in the unaffected individuals in the family and 150 normal controls. Our results indicate that mutation p.Arg954Trp of the KIF21A is the genetic basis of the Chinese family with CFEOM1.  相似文献   

12.

Purpose

To describe at molecular level a family with pulverulent congenital cataract associated with a CRYGC gene mutation.

Methods

One family with several affected members with pulverulent congenital cataract and 230 healthy controls were examined. Genomic DNA from leukocytes was isolated to analyze the CRYGA-D cluster, CX46, CX50 and MIP genes through high-resolution melting curve and DNA sequencing.

Results

DNA sequencing in the affected members revealed the c.143G>A mutation (p.R48H) in exon 2 of the CRYGC gene; 230 healthy controls and ten healthy relatives were also analyzed and none of them showed the c.143G>A mutation. No other polymorphisms or mutations were found to be present.

Conclusion

In the present study, we described a family with pulverulent congenital cataract that segregated the c.143G>A mutation (p.R48H) in the CRYGC gene. A few mutations have been described in the CRYGC gene in autosomal dominant cataract, none of them with pulverulent cataract making clear the clinical heterogeneity of congenital cataract. This mutation has been associated with the phenotype of congenital cataract but also is considered an SNP in the NCBI data base. Our data and previous report suggest that p.R48H could be a disease-causing mutation and not an SNP.  相似文献   

13.
Waardenburg syndrome type IV (WS4) is a rare genetic disorder, characterized by auditory–pigmentary abnormalities and Hirschsprung disease. Mutations of the EDNRB gene, EDN3 gene, or SOX10 gene are responsible for WS4. In the present study, we reported a case of a Chinese patient with clinical features of WS4. In addition, the three genes mentioned above were sequenced in order to identify whether mutations are responsible for the case. We revealed a novel nonsense mutation, c.1063C>T (p.Q355*), in the last coding exon of SOX10. The same mutation was not found in three unaffected family members or 100 unrelated controls. Then, the function and mechanism of the mutation were investigated in vitro. We found both wild-type (WT) and mutant SOX10 p.Q355* were detected at the expected size and their expression levels are equivalent. The mutant protein also localized in the nucleus and retained the DNA-binding activity as WT counterpart; however, it lost its transactivation capability on the MITF promoter and acted as a dominant-negative repressor impairing function of the WT SOX10.  相似文献   

14.
Auditory neuropathy spectrum disorder (ANSD) is caused by dys-synchronous auditory neural response as a result of impairment of the functions of the auditory nerve or inner hair cells, or synapses between inner hair cells and the auditory nerve. To identify a causative gene causing ANSD in the Korean population, we conducted gene screening of the OTOF, DIAPH3, and PJVK genes in 19 unrelated Korean patients with ANSD. A novel nonsense mutation (p.Y1064X) and a known pathogenic mutation (p.R1939Q) of the OTOF gene were identified in a patient as compound heterozygote. Pedigree analysis for these mutations showed co-segregation of mutation genotype and the disease in the family, and it supported that the p.Y1064X might be a novel genetic cause of autosomal recessive ANSD. A novel missense variant p.K1017R (c.3050A>G) in the DIAPH3 gene was also identified in the heterozygous state. In contrast, no mutation was detected in the PJVK gene. These results indicate that no major causative gene has been reported to date in the Korean population and that pathogenic mutations in undiscovered candidate genes may have an effect on ANSD.  相似文献   

15.
Triple A (or Allgrove) syndrome is an autosomal recessive genetic disorder. Patients typically suffer from chronic adrenal insufficiency due to resistance to ACTH (Addison's disease), achalasia of the cardia, and defective tear formation (alacrima). The syndrome is caused by mutations in the AAAS gene which encodes the protein ALADIN, a constituent of eukaryotic nuclear pore complexes. The multi-systemic nature and variable manifestations of the triple A syndrome often confound its diagnosis and limit our understanding of its exact pathogenesis. We performed mutational screening of the AAAS gene in a Greek family of four individuals, including an affected propositus with typical symptoms of late-onset triple A syndrome. Our results are consistent with an autosomal recessive pattern of inheritance within the family, caused by a functional c.43C > A mutation in exon 1 of the AAAS gene. All members of the family were also homozygous for a silent c.855C > T nucleotide change within exon 9 of the AAAS gene, representing a common single nucleotide polymorphism. The compromising c.43C > A mutation is predicted to cause a p.Gln15Lys amino acid substitution in the ALADIN protein. However, it has been suggested that the functional impact of this mutation may be more severe, causing a shift in the reading frame of AAAS gene via formation of an aberrant premature donor splice site within exon 1. We propose that mutational analysis of the AAAS gene should be considered in adult patients with one or more clinical signs of the disease, as diagnosis of late-onset cases can be ambiguous.  相似文献   

16.
The X-linked form of Alport syndrome is associated with mutations in the COL4A5 gene, which is located at Xq22.3 and encodes the α5 chain of type IV collagen. Here we clinically characterized a Chinese family with Alport Syndrome, but no ocular or hearing abnormalities have been observed in any patient in the family. Through Linkage analysis and direct DNA sequencing, a novel complex deletion/insertion mutation c.359_363delGTATTinsATAC in the COL4A5 gene was identified in the family. The mutation was found in all affected family members, but was not present in the unaffected family individuals or the 200 controls. The predicted mutant protein in the family is a truncated protein consisting of only 153 residues. Our report for the first time revealed that the frameshift mutation in the type IV collagen chain α5 causes only renal disease, without extrarenal lesion. Our study broadens genotypic and phenotypic spectrum of COL4A5 mutations associated with Alport syndrome.  相似文献   

17.
Myocilin (MYOC) gene is expressed in many ocular tissues, including the trabecular meshwork, a specialized eye tissue essential in regulating intraocular pressure. Many mutations in MYOC have been detected in primary open-angle glaucoma (POAG). We investigated whether MYOC mutations contributed to the susceptibility to POAG in a Chinese family. In a four-generation family affected with POAG, ocular examinations were performed on all members of the pedigree to determine their disease status, and 200 healthy matched controls were recruited. PCR–restriction fragment length polymorphism (PCR–RFLP) analysis and DNA sequencing were used to determine the mutations in MYOC. Biological software was used to analyze the corresponding proteins for missense mutations. The c.1084G>− was found, for the first time, in four of eight affected patients and in one of two patients with suspected POAG. The c.1006C>T mutation was found in two of eight patients and in one of 19 subjects who were asymptomatic. The frequencies of c.1084G>− and c.1006C>T were 12.82 and 7.69%, respectively, in patients but not in the controls. These data provide additional clues to the pathogenesis of POAG because no other mutation was detected in either group. Our results suggest that the MYOC c.1084G>− may contribute to a genetic predisposition to POAG.  相似文献   

18.
BackgroundLong QT syndromes (LQTS) are characterized by prolonged QTc interval on electrocardiogram (ECG) and manifest with syncope, seizures or sudden cardiac death. Long QT 1–3 constitute about 75% of all inherited LQTS. We classified a cohort of Indian patients for the common LQTS based on T wave morphology and triggering factors to prioritize the gene to be tested. We sought to identify the causative mutations and mutation spectrum, perform genotype-phenotype correlation and screen family members.MethodsThirty patients who fulfilled the criteria were enrolled. The most probable candidate gene among KCNQ1, KCNH2 and SCN5A were sequenced.ResultsOf the 30 patients, 22 were classified at LQT1, two as LQT2 and six as LQT3. Mutations in KCNQ1 were identified in 17 (77%) of 22 LQT1 patients, KCNH2 mutation in one of two LQT2 and SCN5A mutations in two of six LQT3 patients. We correlated the presence of the specific ECG morphology in all mutation positive cases. Eight mutations in KCNQ1 and one in SCN5A were novel and predicted to be pathogenic by in-silico analysis. Of all parents with heterozygous mutations, 24 (92%) of 26 were asymptomatic. Ten available siblings of nine probands were screened and three were homozygous and symptomatic, five heterozygous and asymptomatic.ConclusionsThis study in a cohort of Asian Indian patients highlights the mutation spectrum of common Long QT syndromes. The clinical utility for prevention of unexplained sudden cardiac deaths is an important sequel to identification of the mutation in at-risk family members.  相似文献   

19.
The SNRNP200 gene encodes hBrr2, a helicase essential for pre-mRNA splicing. Six mutations in SNRNP200 have recently been discovered to be associated with autosomal dominant retinitis pigmentosa (adRP). In this work, we analyzed a Chinese family with adRP and identified a novel missense mutation in SNRNP200. To identify the genetic defect in this family, exome of the proband was captured and sequencing analysis was performed to exclude known genetic defects and find possible pathogenic mutations. Subsequently, candidate mutations were validated in affected family members using Sanger sequencing. A novel missense mutation, c.2653C>G transition (p.Q885E), in exon 20 of SNRNP200 was identified. The mutation co-segregated with the disease phenotype over four generations and was absent in 100 normal unaffected individuals. This mutation occurs at highly conserved position in hBrr2 and is predicted to have a functional impact, suggesting that hBrr2-dependent small nuclear riboproteins (snRNPs) unwinding and spliceosome activation is important in the pathogenesis of some variants of RP.  相似文献   

20.
We studied a family presenting 10 individuals affected by autosomal dominant deafness in all frequencies and three individuals affected by high frequency hearing loss. Genomic scanning using the 50k Affymetrix microarray technology yielded a Lod Score of 2.1 in chromosome 14 and a Lod Score of 1.9 in chromosome 22. Mapping refinement using microsatellites placed the chromosome 14 candidate region between markers D14S288 and D14S276 (8.85 cM) and the chromosome 22 near marker D22S283. Exome sequencing identified two candidate variants to explain hearing loss in chromosome 14 [PTGDR – c.G894A:p.R298R and PTGER2 – c.T247G:p.C83G], and one in chromosome 22 [MYH9, c.G2114A:p.R705H]. Pedigree segregation analysis allowed exclusion of the PTGDR and PTGER2 variants as the cause of deafness. However, the MYH9 variant segregated with the phenotype in all affected members, except the three individuals with different phenotype. This gene has been previously described as mutated in autosomal dominant hereditary hearing loss and corresponds to DFNA17. The mutation identified in our study is the same described in the prior report. Thus, although linkage studies suggested a candidate gene in chromosome 14, we concluded that the mutation in chromosome 22 better explains the hearing loss phenotype in the Brazilian family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号