首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Substantial progress has been made in the past decade in treating several primary immunodeficiency disorders (PIDs) with gene therapy. Current approaches are based on ex-vivo transfer of therapeutic transgene via viral vectors to patient-derived autologous hematopoietic stem cells (HSCs) followed by transplantation back to the patient with or without conditioning. The overall outcome from all the clinical trials targeting different PIDs has been extremely encouraging but not without caveats. Malignant outcomes from insertional mutagenesis have featured prominently in the adverse events associated with these trials and have warranted intense pre-clinical investigation into defining the tendencies of different viral vectors for genomic integration. Coupled with issues pertaining to transgene expression, the therapeutic landscape has undergone a paradigm shift in determining safety, stability and efficacy of gene therapy approaches. In this review, we aim to summarize the progress made in the gene therapy trials targeting ADA-SCID, SCID-X1, CGD and WAS, review the pitfalls, and outline the recent advancements which are expected to further enhance favourable risk benefit ratios for gene therapeutic approaches in the future.  相似文献   

2.
Increased interest in development of combined gene therapy emerges from results of recent clinical trials that indicate good safety yet unexpected low efficacy of "single-gene" administration. Multiple studies showed that vascular endothelial growth factor 165 aminoacid form (VEGF165) and hepatocyte growth factor (HGF) can be used for induction of angiogenesis in ischemic myocardium and skeletal muscle. Gene transfer system composed of a novel cytomegalovirus-based (CMV) plasmid vector and codon-optimized human VEGF165 and HGF genes combined with intramuscular low-voltage electroporation was developed and tested in vitro and in vivo. Studies in HEK293T cell culture, murine skeletal muscle explants and ELISA of tissue homogenates showed efficacy of constructed plasmids. Functional activity of angiogenic proteins secreted by HEK293T after transfection by induction of tube formation in human umbilical vein endothelial cell (HUVEC) culture. HUVEC cells were used for in vitro experiments to assay the putative signaling pathways to be responsible for combined administration effect one of which could be the ERK1/2 pathway. In vivo tests of VEGF165 and HGF genes co-transfer were conceived in mouse model of hind limb ischemia. Intramuscular administration of plasmid encoding either VEGF165 or HGF gene resulted in increased perfusion compared to empty vector administration. Mice injected with a mixture of two plasmids (VEGF165+HGF) showed significant increase in perfusion compared to single plasmid injection. These findings were supported by increased CD31+ capillary and SMA+ vessel density in animals that received combined VEGF165 and HGF gene therapy compared to single gene therapy. Results of the study suggest that co-transfer of VEGF and HGF genes renders a robust angiogenic effect in ischemic skeletal muscle and may present interest as a potential therapeutic combination for treatment of ischemic disorders.  相似文献   

3.
Adenoviral, retroviral/lentiviral, adeno-associated viral, and herpesviral vectors are the major viral vectors used in gene therapy. Compared with non-viral methods, viruses are highly-evolved, natural delivery agents for genetic materials. Despite their remarkable transduction efficiency, both clinical trials and laboratory experiments have suggested that viral vectors have inherent shortcomings for gene therapy, including limited loading capacity, immunogenicity, genotoxicity, and failure to support long-term adequate transgenic expression. One of the key issues in viral gene therapy is the state of the delivered genetic material in transduced cells. To address genotoxicity and improve the therapeutic transgene expression profile, construction of hybrid vectors have recently been developed. By adding new abilities or replacing certain undesirable elements, novel hybrid viral vectors are expected to outperform their conventional counterparts with improved safety and enhanced therapeutic efficacy. This review provides a comprehensive summary of current achievements in hybrid viral vector development and their impact on the field of gene therapy.  相似文献   

4.
Viral gene therapy has exceptional potential as a specifically tailored cancer treatment. However, enthusiasm for cancer gene therapy has varied over the years, partly owing to safety concerns after the death of a young volunteer in a clinical trial for a genetic disease. Since this singular tragedy, results from numerous clinical trials over the past 10 years have restored the excellent safety profile of adenoviral vectors. These vectors have been extensively studied in phase I and II trials as intraprostatically administered agents for patients with locally recurrent and high-risk local prostate cancer. Promising therapeutic responses have been reported in several studies with both oncolytic and suicide gene therapy strategies. The additional benefit of combining gene therapy with radiation therapy has also been realized; replicating adenoviruses inhibit DNA repair pathways, resulting in a synergistic sensitization to radiation. Other, nonreplicating suicide gene therapy strategies are also significantly enhanced with radiation. Combined radiation/gene therapy is currently being studied in phase I and II clinical trials and will likely be the first adenoviral gene therapy mechanism to become available to urologists in the clinic. Systemic gene therapy for metastatic disease is also a major goal of the field, and clinical trials are currently under way for hormone-resistant metastatic prostate cancer. Second- and third-generation "re-targeted" viral vectors, currently being developed in the laboratory, are likely to further improve these systemic trials.  相似文献   

5.
Therapeutic angiogenesis constitutes an alternative treatment for patients with extensive tissue ischaemia in whom primary vascular reconstruction procedures are not feasible or have previously failed. At present vascular endothelial growth factor (VEGF) has been the most widely used angiogenic factor in experimental and human clinical trials. Early clinical data provide evidence that gene transfer of the VEGF gene can achieve beneficial angiogenesis, with minimal side-effects. Ongoing phase III clinical studies will reveal definitive efficacy.  相似文献   

6.
Two decades after the initial gene therapy trials and more than 1700 approved clinical trials worldwide we not only have gained much new information and knowledge regarding gene therapy in general, but also learned to understand the concern that has persisted in society. Despite the setbacks gene therapy has faced, success stories have increasingly emerged. Examples for these are the positive recommendation for a gene therapy product (Glybera) by the EMA for approval in the European Union and the positive trials for the treatment of ADA deficiency, SCID-X1 and adrenoleukodystrophy. Nevertheless, our knowledge continues to grow and during the course of time more safety data has become available that helps us to develop better gene therapy approaches. Also, with the increased understanding of molecular medicine, we have been able to develop more specific and efficient gene transfer vectors which are now producing clinical results.  相似文献   

7.
PURPOSE OF REVIEW: To provide an update on clinical trials of gene therapy for atherosclerotic cardiovascular disease published since 1 August 2001 and summarize the general advantages and potential problems of gene transfer in these disorders. RECENT FINDINGS: There are two major areas in which gene therapy has entered clinical trials. The first is angiogenesis for coronary and peripheral arterial disease. Two relatively small placebo-controlled trials for coronary disease were reported, one using intramyocardial plasmid VEGF-2 gene, the other using intracoronary adenoviral FGF-4 gene. The VEGF-2 study in no-option patients showed reduced angina, and significant improvement in perfusion and function, whereas the FGF-4 study in less severely affected patients showed promising results in some subsets. In peripheral artery disease two phase 1 studies of adenoviral NV1FGF and VEGF showed some objective improvement in pain, ulcer size and ankle:brachial index in one study and endothelial function in the other. Both adenoviral and plasmid VEGF gene transfer at angioplasty increased vascularity in a phase 2 double-blind study. The other major area is the prevention of graft disease and restenosis using antisense oligodeoxynucleotides. E2F decoy led to a significant reduction in venous graft complications after ex-vivo transfection at the time of coronary bypass surgery, whereas the c-Myc oligodeoxynucleotide was ineffective in preventing in-stent coronary restenosis. SUMMARY: There are more reviews of gene therapy for atherosclerosis in the literature than publications with original data or trials, but in the past year the imbalance is being redressed, with some promising results from controlled studies.  相似文献   

8.
Therapeutic angiogenesis for peripheral artery disease (PAD), achieved by gene and cell therapy, has recently raised a great deal of hope for patients who cannot undergo standard revascularizing treatment. Although pre-clinical studies gave very promising data, still clinical trials of gene therapy have not provided satisfactory results. On the other hand, cell therapy approach, despite several limitations, demonstrated more beneficial effects but initial clinical studies must be constantly validated by larger randomized, multi-center, double-blinded, placebo-controlled trials. This review focuses on previous and recent gene and cell therapy studies for limb ischemia, including both experimental and clinical research, and summarizes some important papers published in this field. Moreover, it provides a short comment on combined gene and cell therapy approach on the example of heme oxygenase-1 overexpressing cells with therapeutic properties.  相似文献   

9.
Osteosarcoma (OS) is the most common primary malignant bone tumour with a peak in incidence during adolescence. Delayed patient presentation and diagnosis is common with approximately 15% of OS patients presenting with metastatic disease at initial diagnosis. With the introduction of neoadjuvant chemotherapy in the 1970s, disease prognosis improved from 17% to 60%‐70% 5‐year survival, but outcomes have not significantly improved since then. Novel and innovative therapeutic strategies are urgently needed as an adjunct to conventional treatment modalities to improve outcomes for OS patients. Angiogenesis is crucial for tumour growth, metastasis and invasion, and its prevention will ultimately inhibit tumour growth and metastasis. Dysregulation of angiogenesis in bone microenvironment involving osteoblasts and osteoclasts might contribute to OS development. This review summarizes existing knowledge regarding pre‐clinical and developmental research of targeted anti‐angiogenic therapy for OS with the aim of highlighting the limitations associated with this application. Targeted anti‐angiogenic therapies include monoclonal antibody to VEGF (bevacizumab), tyrosine kinase inhibitors (Sorafenib, Apatinib, Pazopanib and Regorafenib) and human recombinant endostatin (Endostar). However, considering the safety and efficacy of these targeted anti‐angiogenesis therapies in clinical trials cannot be guaranteed at this point, further research is needed to completely understand and characterize targeted anti‐angiogenesis therapy in OS.  相似文献   

10.
New strategies for cardiovascular gene therapy   总被引:1,自引:0,他引:1  
Cardiovascular diseases are among the major targets for gene therapy. Initially, clinical experiments of gene transfer of vascular endothelial growth factor (VEGF) improved vascularization and prevented the amputation in patients with critical leg ischemia. However, the majority of trials did not provide conclusive results and therefore further preclinical studies are required. Importantly, data indicate the necessity of regulated expression of angiogenic factors, particularly VEGF, to obtain the therapeutic effect. It is also suggested that the combined delivery of two or more genes may improve the formation of mature vasculature and therefore may be more effective in the amelioration of ischemia. Moreover, experimental approaches in animal models displayed the promise of gene transfer modulating the inflammatory processes and oxidant status of the cells. Particularly, the concept of preemptive gene therapy has been tested, and recent studies have demonstrated that overexpression of heme oxygenase-1 or extracellular superoxide dismutase can prevent heart injury by myocardial infarction induced several weeks after gene instillation. The combination of a preemptive strategy with regulated gene expression, using the vectors in which the therapeutic transgene is driven by exogenously or endogenously controllable promoter, offers another modality. However, we hypothesize that regulatable gene therapy, dependent on the activity of endogenous factors, might be prone to limitations owing to the potential disturbance in the expression of endogenous genes. Here, we demonstrated some indications of these drawbacks. Therefore, the final acceptance of these promising strategies for clinical trials requires careful validation in animal experiments.  相似文献   

11.
Gene therapy of severe combined immunodeficiencies has been proven to be effective to provide sustained correction of the T cell immunodeficiencies. This has been achieved for 2 forms of SCID, i.e SCID-X1 (γc deficiency) and adenosine deaminase deficiency. Occurrence of gene toxicity generated by integration of first generation retroviral vectors, as observed in the SCID-X1 trials has led to replace these vectors by self inactivated (SIN) retro(or lenti) viruses that may provide equivalent efficacy with a better safety profile. Results of ongoing clinical studies in SCID as well as in other primary immunodeficiencies, such as the Wiskott Aldrich syndrome, will be thus very informative.  相似文献   

12.
《Cytotherapy》2022,24(3):225-234
Background aimsSeveral studies have shown the efficacy of mesenchymal stem cell (MSC) therapy for lower extremity vascular disease (LEVD) in diabetic patients, but the results are not consistent. Therefore, the authors conducted a meta-analysis of randomized controlled trials (RCTs) to examine the safety and efficacy of MSC therapy in diabetic patients with LEVD.MethodsEight available databases were searched in both English and Chinese to identify RCTs comparing MSC therapy-based conventional treatment with conventional treatment alone in diabetic patients with LEVD. Three investigators independently screened the literature, extracted the data and assessed the risk bias. Meta-analysis was performed using RevMan 5.4.1 and Stata 14.0.ResultsA total of 10 studies involving 453 patients were included. Compared with conventional treatment only, patients receiving MSC therapy-based conventional treatment had a higher ulcer healing rate, greater number of reduced ulcers and shorter complete healing time. MSC therapy also increased ankle–brachial index and transcutaneous oxygen pressure. In addition, four of the included studies showed that MSC therapy significantly improved the number of new collateral vessels. Moreover, no more adverse events were recorded in the MSC group.ConclusionsThis meta-analysis suggests that MSC therapy promotes ulcer healing in diabetic LEVD patients with ulcers, improves blood supply and has a favorable safety profile. More large and well-designed RCTs with long-term follow-up are still needed to explore the safety and efficacy of MSC therapy in diabetic patients with LEVD.  相似文献   

13.
Antisense oligonucleotides as therapeutic agents.   总被引:27,自引:0,他引:27  
Antisense oligonucleotides can block the expression of specific target genes involved in the development of human diseases. Therapeutic applications of antisense techniques are currently under investigation in many different fields. The use of antisense molecules to modify gene expression is variable in its efficacy and reliability, raising objections about their use as therapeutic agents. However, preliminary results of several clinical studies demonstrated the safety and to some extent the efficacy of antisense oligodeoxynucleotides (ODNs) in patients with malignant diseases. Clinical response was observed in some patients suffering from ovarian cancer who were treated with antisense targeted against the gene encoding for the protein kinase C-alpha. Some hematological diseases treated with antisense oligos targeted against the bcr/abl and the bcl2 mRNAs have shown promising clinical response. Antisense therapy has been useful in the treatment of cardiovascular disorders such as restenosis after angioplasty, vascular bypass graft occlusion, and transplant coronary vasculopathy. Antisense oligonucleotides also have shown promise as antiviral agents. Several investigators are performing trials with oligonucleotides targeted against the human immunodeficiency virus-1 (HIV-1) and hepatitis viruses. Phosphorothioate ODNs now have reached phase I and II in clinical trials for the treatment of cancer and viral infections, so far demonstrating an acceptable safety and pharmacokinetic profile for continuing their development. The new drug Vitravene, based on a phosphorothioate oligonucleotide designed to inhibit the human cytomegalovirus (CMV), promises that some substantial successes can be reached with the antisense technique.  相似文献   

14.
Gene therapy using anticancer drug-resistance genes   总被引:1,自引:0,他引:1  
Sugimoto Y 《Human cell》1999,12(3):115-123
Myelosuppression is a major dose-limiting factor in cancer chemotherapy. Introduction of drug-resistance genes into bone marrow cells of cancer patients has been proposed to overcome this limitation. In theory, any gene whose expression protects cells against the toxic effects of chemotherapy should be useful in vivo for this purpose. Among such genes, human multidrug-resistance gene (MDR1) has been studied most extensively for this purpose, and clinical trials of drug-resistance gene therapy have been started in the US for cancer patients who undergo high-dose chemotherapy with autologous hematopoietic stem cell transplantation. In Japan, our clinical protocol of MDR1 gene therapy "A clinical study of drug-resistance gene therapy to improve the efficacy and safety of chemotherapy against breast cancer" has been submitted to the government. To improve the efficacy and safety of this drug-resistance gene therapy, we have constructed a series of MDR1-bicistronic retrovirus vectors using a retrovirus backbone of Harvey murine sarcoma virus and internal ribosome entry site (IRES) from picornavirus to co-express a second gene with the MDR1 gene. MDR1-MGMT bicistronic vectors can be used to protect bone marrow cells of cancer patients from combination chemotherapy with MDR1-related anticancer agents and nitrosoureas. In addition, MDR1-bicistronic retrovirus vectors can be designed to use the MDR1 gene as an in vivo selectable marker to enrich the transduced cells which express therapeutic genes, if disease is curable by the expression of a single-peptide gene in any types of bone marrow cells or peripheral blood cells.  相似文献   

15.
免疫检查点抑制剂(immune checkpoint inhibitors,ICIs)通过阻断负调控免疫信号激活宿主抗肿瘤免疫反应。临床试验表明,ICIs的治疗能够明显引起部分晚期癌症患者的肿瘤消退。在临床实践中,ICIs治疗的一个主要问题是药物应答率低。尽管PD-L1表达、错配修复缺陷、肿瘤浸润性淋巴细胞状态等多种预测生物标志物已被用于筛选对治疗有应答的患者,但ICIs单药治疗的耐药性仍存在。近期研究表明,联合抗VEGF治疗可以减轻ICIs的耐药性。VEGF能抑制肿瘤生长和转移所必需的血管生成,同时能够对肿瘤免疫微环境进行重编程,减轻ICIs的耐药性。目前已针对此双靶点的联合治疗开展了很多临床试验,并获得了令人振奋的结果。对抗PD-L1联合抗VEGF治疗的作用机制以及PD-L1/VEGF联合阻断治疗的临床研究进行了综述汇总。  相似文献   

16.
Oncolytic virus immunotherapy is rapidly gaining interest in the field of immunotherapy against cancer. The minimal toxicity upon treatment and the dual activity of direct oncolysis and immune activation make therapy with oncolytic viruses (OVs) an interesting treatment modality. The safety and efficacy of several OVs have been assessed in clinical trials and, so far, the Food and Drug Administration (FDA) has approved one OV. Unfortunately, most treatments with OVs have shown suboptimal responses in clinical trials, while they appeared more promising in preclinical studies, with tumours reducing after immune cell influx. In several clinical trials with OVs, parameters such as virus replication, virus-specific antibodies, systemic immune responses, immune cell influx into tumours and tumour-specific antibodies have been studied as predictors or correlates of therapy efficacy. In this review, these studies are summarized to improve our understanding of the determinants of the efficacy of OV therapies in humans and to provide insights for future developments in the viro-immunotherapy treatment field.  相似文献   

17.
Many proliferative diseases, most typically cancer, are driven by uncontrolled blood vessel growth. Genetic studies have been very helpful in unraveling the cellular and molecular players in pathological blood vessel formation and have provided opportunities to reduce tumor growth and metastasis. The fact that tumor vessels and normal blood vessels have distinct properties may help in designing more specific--and therefore safer--anti-angiogenic strategies. Such strategies may interfere with angiogenesis at the cellular or molecular level. Possible molecular targets include angiogenic growth factors and their receptors, proteinases, coagulation factors, junctional/adhesion molecules and extracellular matrix (ECM) components. Some anti-angiogenic drugs, i.e., vascular endothelial growth factor (VEGF) antibodies and VEGF receptor-2 (VEGFR-2) inhibitors, have progressed into clinical cancer trials. While the results of these trials support the potential of anti-angiogenic therapy to treat cancer, they also demonstrate the need for more effective and safer alternatives. Targeting placental growth factor (PlGF) or VEGFR-1 may constitute such an alternative since animal studies have proven their pleiotropic working mechanism and attractive safety profile. Together, these insights may bring anti-angiogenic drugs closer from bench to bedside.  相似文献   

18.
Age-related macular degeneration (AMD) is a major cause of severe visual loss worldwide. Neovascular (wet) AMD accounts for 90% of the visual loss associated with the disorder and vascular endothelial growth factor (VEGF) has been shown to play a major role in neovascularization and vascular permeability, the major causes of visual loss in AMD, making it an ideal target for therapeutic intervention. To utilize this strategy, pegaptanib, an aptamer that specifically binds to and blocks VEGF165, the VEGF isoform primarily responsible for abnormal vascular growth and permeability in AMD, was developed. Following encouraging preclinical trials, clinical trials showed that pegaptanib stabilized vision and reduced the risk of severe visual loss in the majority of patients with AMD, with some patients showing visual improvement. Pegaptanib has maintained a good safety profile with only occasional adverse effects. Even greater success was achieved when pegaptanib was used in combination with another therapeutic strategy, such as photodynamic therapy or bevacizumab, a pan isoform VEGF inhibitor. Further investigation of pegaptanib for the therapy of wet AMD, particularly in combination with other modes of therapy, should be encouraged.  相似文献   

19.
The concept of gene therapy was envisioned soon after the emergence of restriction endonucleases and subcloning of mammalian genes in phage and plasmids. Over the ensuing decades, vectors were developed, including nonviral methods, integrating virus vectors (gammaretrovirus and lentivirus), and non-integrating virus vectors (adenovirus, adeno-associated virus, and herpes simplex virus vectors). Preclinical data demonstrated potential efficacy in a broad range of animal models of human diseases, but clinical efficacy in humans remained elusive in most cases, even after decades of experience in over 1000 trials. Adverse effects from gene therapy have been observed in some cases, often because of viral vectors retaining some of the pathogenic potential of the viruses upon which they are based. Later generation vectors have been developed in which the safety and/or the efficiency of gene transfer has been improved. Most recently this work has involved alterations of vector envelope or capsid proteins either by insertion of ligands to target specific receptors or by directed evolution. The disease targets for gene therapy are multiple, but the most promising data have come from monogenic disorders. As the number of potential targets for gene therapy continues to increase, and a substantial number of trials continue with both the standard and the later generation vector systems, it is hoped that a therapeutic niche for gene therapy will emerge in the coming decades.  相似文献   

20.
概述了近年来利用血管内皮细胞生长因子(VEGF)基因治疗闭塞性血管病的成果,初步探讨了VEGF基因的临床疗效及其应用的安全性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号