首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Xu L  Zhang Z  Wang L  Feng D  Zhou X  Xu B  Zhao D 《Gene》2012,491(2):256-259
Up to now, little is known about the prion protein gene (PRNP) of domestic bactrian camels, and no polymorphisms of the bactrian camel PRNP have been analyzed or reported. In this study, we cloned and analyzed the PRNP sequences of 89 domestic bactrian camels. The results showed that the amino acid sequence of bactrian camel PrP starts with the consensus sequence MVKSH, with almost identical amino acid sequence to the PrP of dromedary camels. A four octapeptide PHGGGWGQ repeat region follows a nonapeptide (PQGGGGWGQ) in the N-terminal of deduced amino acid sequence from residues 54 to 95. Polymorphisms of PRNP in both species of camels were observed in codons 16(A → V), 17(M → T), 120(N → S), 176(R → K), 215(I → V), 234(S → Y), 237(Y → S), and 239(Q → G) by comparing with other ruminants. The PrP gene nucleotide sequence alignments of bactrian camels (HQ204566.1 and HQ204567.1) showed high identity with dromedary camel (99.2%, 99.1%), sheep (91.9%, 91.8%) and cattle (91.8%, 91.6%). This study provides valuable data for future research on susceptibility or resistance of camels to prion diseases.  相似文献   

2.
The NMR structure of the horse (Equus caballus) cellular prion protein at 25 °C exhibits the typical PrPC [cellular form of prion protein (PrP)] global architecture, but in contrast to most other mammalian PrPCs, it contains a well-structured loop connecting the β2 strand with the α2 helix. Comparison with designed variants of the mouse prion protein resulted in the identification of a single amino acid exchange within the loop, D167S, which correlates with the high structural order of this loop in the solution structure at 25 °C and is unique to the PrP sequences of equine species. The β2-α2 loop and the α3 helix form a protein surface epitope that has been proposed to be the recognition area for a hypothetical chaperone, “protein X,” which would promote conversion of PrPC into the disease-related scrapie form and thus mediate intermolecular interactions related to the transmission barrier for transmissible spongiform encephalopathies (TSEs) between different species. The present results are evaluated in light of recent indications from in vivo experiments that the local β2-α2 loop structure affects the susceptibility of transgenic mice to TSEs and the fact that there are no reports on TSE in horses.  相似文献   

3.
Cell based models used for the study of prion diseases have traditionally employed mouse-adapted strains of sheep scrapie prions. To date, attempts to generate human prion propagation in cell culture have been unsuccessful. Rabbit kidney epithelial cells (RK13) are permissive to infection with prions from a variety of species upon expression of cognate PrP transgenes. We explored RK13 cells expressing human PrP for their utility as a cell line capable of sustaining infection with human prions. RK13 cells processed exogenously expressed human PrP similarly to exogenously expressed mouse PrP but were not permissive to infection when exposed to sporadic Creutzfeldt-Jakob disease prions. Transmission of the same sporadic Creutzfeldt Jakob disease prions to wild-type mice generated a strain of mouse-adapted human prions, which efficiently propagated in RK13 cells expressing mouse PrP, demonstrating these cells are permissive to infection by mouse-adapted human prions. Our observations underscore the likelihood that, in contrast to prions derived from non-human mammals, additional unidentified cofactors or subcellular environment are critical for the generation of human prions.  相似文献   

4.
Prion diseases are infectious fatal neurodegenerative diseases including Creutzfeldt-Jakob disease in humans and bovine spongiform encephalopathy in cattle. The misfolding and conversion of cellular PrP in such mammals into pathogenic PrP is believed to be the key procedure. Rabbits are among the few mammalian species that exhibit resistance to prion diseases, but little is known about the molecular mechanism underlying such resistance. Here, we report that the crowding agents Ficoll 70 and dextran 70 have different effects on fibrillization of the recombinant full-length PrPs from different species: although these agents dramatically promote fibril formation of the proteins from human and cow, they significantly inhibit fibrillization of the rabbit protein by stabilizing its native state. We also find that fibrils formed by the rabbit protein contain less β-sheet structure and more α-helix structure than those formed by the proteins from human and cow. In addition, amyloid fibrils formed by the rabbit protein do not generate a proteinase K-resistant fragment of 15–16-kDa, but those formed by the proteins from human and cow generate such proteinase K-resistant fragments. Together, these results suggest that the strong inhibition of fibrillization of the rabbit PrP by the crowded physiological environment and the absence of such a protease-resistant fragment for the rabbit protein could be two of the reasons why rabbits are resistant to prion diseases.  相似文献   

5.
Xu L  Zhang Z  Zhou X  Yin X  Yang L  Zhao D 《Gene》2011,485(2):102-105
The resistance or susceptibility of sheep to scrapie is associated with polymorphisms of the prion protein gene (PRNP), particularly, single nucleotide polymorphisms (SNPs) in amino acid positions 136, 154 and 171. The prion protein (PrP) gene sequence and the deduced amino acid alignment of prion protein in Tan sheep, a local Chinese sheep breed traditionally raised in Ningxia, northwestern China, were determined and variability of the PrP amino acids sequence was analyzed in this study. The PrP nucleic acids and amino acids sequences of 112 Tan sheep were highly homogenous, although polymorphism of the PrP gene was detected at several sites, particularly codons 106, 154, and 171. The analysis of both sequences revealed that the most predominant allele at codons 136, 154 and 171 in Tan sheep was ARQ, which was known to be associated with high susceptibility to scrapie in sheep. The result suggests that Tan sheep is potentially susceptible to scrapie. Our findings provide valuable information for future breeding projects to scrapie resistance in Tan sheep.  相似文献   

6.
Prion diseases such as bovine spongiform encephalopathy in cattle and Creutzfeldt–Jakob disease in humans are associated with the misfolding and accumulation of an abnormal conformation of the host-encoded prion protein (PrP). Despite intensive research efforts conducted on PrP, the toxic agent involved in neurodegeneration is as yet unidentified. Several potential candidates have been proposed, each of which may be relevant to subsets of the broad array of prion diseases. In this study, we review current knowledge on neurotoxic PrP species, including the importance of a central hydrophobic domain for mediating neurotoxicty.  相似文献   

7.
In this study, a new beta-helical model is proposed that explains the species barrier and strain variation in transmissible spongiform encephalopathies. The left-handed beta-helix serves as a structural model that can explain the seeded growth characteristics of beta-sheet structure in PrP(Sc) fibrils. Molecular dynamics simulations demonstrate that the left-handed beta-helix is structurally more stable than the right-handed beta-helix, with a higher beta-sheet content during the simulation and a better distributed network of inter-strand backbone-backbone hydrogen bonds between parallel beta-strands of different rungs. Multiple sequence alignments and homology modelling of prion sequences with different rungs of left-handed beta-helices illustrate that the PrP region with the highest beta-helical propensity (residues 105-143) can fold in just two rungs of a left-handed beta-helix. Even if no other flanking sequence participates in the beta-helix, the two rungs of a beta-helix can give the growing fibril enough elevation to accommodate the rest of the PrP protein in a tight packing at the periphery of a trimeric beta-helix. The folding of beta-helices is driven by backbone-backbone hydrogen bonding and stacking of side-chains in adjacent rungs. The sequence and structure of the last rung at the fibril end with unprotected beta-sheet edges selects the sequence of a complementary rung and dictates the folding of the new rung with optimal backbone hydrogen bonding and side-chain stacking. An important side-chain stack that facilitates the beta-helical folding is between methionine residues 109 and 129, which explains their importance in the species barrier of prions. Because the PrP sequence is not evolutionarily optimised to fold in a beta-helix, and because the beta-helical fold shows very little sequence preference, alternative alignments are possible that result in a different rung able to select for an alternative complementary rung. A different top rung results in a new strain with different growth characteristics. Hence, in the present model, sequence variation and alternative alignments clarify the basis of the species barrier and strain specificity in PrP-based diseases.  相似文献   

8.
Transmissible spongiform encephalopathies (TSEs) are neurodegenerative pathologies characterized by the accumulation of amyloid fibrils mainly composed of the pathological isoform of the prion protein (PrPTSE). PrPTSE pre-amyloid fibrils are supposed to induce neurodegenerative lesions possibly through the alteration of membrane permeability. The effect of PrPTSE on cellular membranes has been modeled in vitro by synthetic peptides that are, however, only partially representative of PrPTSE isoforms found in vivo. In the present work we show that a synthetic membrane exposed to PrP27-30 extracted from TSE-infected hamster brains changes its permeability because of the formation of molecular pores that alter the conductance of the synthetic lipid bilayer. Synthetic membrane challenged with the recombinant prion peptide PrP90-231 shows a much lower conductance. Elevation of calcium ion concentration not only increases the current amplitude due to the action of both PrP27-30 and PrP90-231 on the membrane, but also amplifies the interaction of PrP90-231 with the lipid bilayer.  相似文献   

9.
The recent introduction of bank vole (Clethrionomys glareolus) as an additional laboratory animal for research on prion diseases revealed an important difference when compared to the mouse and the Syrian hamster, since bank voles show a high susceptibility to infection by brain homogenates from a wide range of diseased species such as sheep, goats, and humans. In this context, we determined the NMR structure of the C-terminal globular domain of the recombinant bank vole prion protein (bvPrP) [bvPrP(121-231)] at 20 °C. bvPrP(121-231) has the same overall architecture as other mammalian PrPs, with three α-helices and an antiparallel β-sheet, but it differs from PrP of the mouse and most other mammalian species in that the loop connecting the second β-strand and helix α2 is precisely defined at 20 °C. This is similar to the previously described structures of elk PrP and the designed mouse PrP (mPrP) variant mPrP[S170N,N174T](121-231), whereas Syrian hamster PrP displays a structure that is in-between these limiting cases. Studies with the newly designed variant mPrP[S170N](121-231), which contains the same loop sequence as bvPrP, now also showed that the single-amino-acid substitution S170N in mPrP is sufficient for obtaining a well-defined loop, thus providing the rationale for this local structural feature in bvPrP.  相似文献   

10.
Prions, the agents responsible for transmissible spongiform encephalopathies, are infectious proteins consisting primarily of scrapie prion protein (PrP(Sc)), a misfolded, β-sheet enriched and aggregated form of the host-encoded cellular prion protein (PrP(C)). Their propagation is based on an autocatalytic PrP conversion process. Despite the lack of a nucleic acid genome, different prion strains have been isolated from animal diseases. Increasing evidence supports the view that strain-specific properties may be enciphered within conformational variations of PrP(Sc). In humans, sporadic Creutzfeldt-Jakob disease (sCJD) is the most frequent form of prion diseases and has demonstrated a wide phenotypic and molecular spectrum. In contrast, variant Creutzfeldt-Jakob disease (vCJD), which results from oral exposure to the agent of bovine spongiform encephalopathy, is a highly stereotyped disease, that, until now, has only occurred in patients who are methionine homozygous at codon 129 of the PrP gene. Recent research has provided consistent evidence of strain diversity in sCJD and also, unexpectedly enough, in vCJD. Here, we discuss the puzzling biochemical/pathological diversity of human prion disorders and the relationship of that diversity to the biological properties of the agent as demonstrated by strain typing in experimental models.  相似文献   

11.
Prion diseases are neurodegenerative fatal disorders that affect human and non-human mammals. Chronic Wasting Disease (CWD) is a prion disease of cervids regarded as a public health problem in North America, and polymorphisms at specific codons in the PRNP gene are associated with this disease. To assess the potential CWD susceptibility of South American free-ranging deer, the presence of these polymorphisms was examined in Mazama gouazoubira, Ozotoceros bezoarticus and Blastocerus dichotomus. Despite the lack of CWD reports in Brazil, the examined codons (95, 96, 116, 132, 225, and 226) of the PRNP gene showed potential CWD susceptibility in Brazilian deer. Low abundancy of deer in Brazil possibly difficult both CWD proliferation and detection, however, CWD surveillance may not be neglected.  相似文献   

12.
1. Prion diseases are a group of rare, fatal neurodegenerative diseases, also known as transmissible spongiform encephalopathies (TSEs), that affect both animals and humans and include bovine spongiform encephalopathy (BSE) in cattle, scrapie in sheep, chronic wasting disease (CWD) in deer and elk, and Creutzfeldt–Jakob disease (CJD) in humans. TSEs are usually rapidly progressive and clinical symptoms comprise dementia and loss of movement coordination due to the accumulation of an abnormal isoform (PrPSc) of the host-encoded prion protein (PrPc). 2. This article reviews the current knowledge on PrPc and PrPSc, prion replication mechanisms, interaction partners of prions, and their cell surface receptors. Several strategies, summarized in this article, have been investigated for an effective antiprion treatment including development of a vaccination therapy and screening for potent chemical compounds. Currently, no effective treatment for prion diseases is available. 3. The identification of the 37 kDa/67 kDa laminin receptor (LRP/LR) and heparan sulfate as cell surface receptors for prions, however, opens new avenues for the development of alternative TSE therapies.  相似文献   

13.
The nature of the factors leading to the conversion of the cellular prion protein (PrP(C)) into its amyloidogenic isoform (PrP(Sc)) is still matter of debate in the field of structural biology. The NMR structures of non-mammalian PrP(C) (non-mPrP) from frog, chicken and turtle [Calzolai, L., Lysek, D.A., Perez, D.R., Guntert, P. and Wuthrich, K. (2005) Prion protein NMR structures of chickens, turtles, and frogs. Proc. Natl. Acad. Sci. USA 102, 651-655] have provided some new and valuable information on the scaffolding elements that preserve the PrP(C) folding, despite their low sequence identity with the mammalian prions (mPrP). The present molecular dynamics study of non-mPrP(C) focuses on the hydration properties of these proteins in comparison with the mammalian ones. The data reveal new insights in the PrP hydration and focus on the implications for PrP(C) folding stability and its propensity for interactions. In addition, for the first time, a role in disfavoring the PrP(C) aggregation is suggested for a conserved beta-bulge which is stabilized by the local hydration.  相似文献   

14.
Mammalian prions     
Upon prion infection, abnormal prion protein (PrPSc) self-perpetuate by conformational conversion of α-helix-rich PrPC into β sheet enriched form, leading to formation and deposition of PrPSc aggregates in affected brains. However the process remains poorly understood at the molecular level and the regions of PrP critical for conversion are still debated. Minimal amino acid substitutions can impair prion replication at many places in PrP. Conversely, we recently showed that bona fide prions could be generated after introduction of eight and up to 16 additional amino acids in the H2-H3 inter-helix loop of PrP. Prion replication also accommodated the insertions of an octapeptide at different places in the last turns of H2. This reverse genetic approach reveals an unexpected tolerance of prions to substantial sequence changes in the protease-resistant part which is associated with infectivity. It also demonstrates that conversion does not require the presence of a specific sequence in the middle of the H2-H3 area. We discuss the implications of our findings according to different structural models proposed for PrPSc and questioned the postulated existence of an N- or C-terminal prion domain in the protease-resistant region.  相似文献   

15.
The intrinsically disordered amino-proximal domain of hamster prion protein (PrP) contains four copies of a highly conserved octapeptide sequence, PHGGGWGQ, that is flanked by two polycationic residue clusters. This N-terminal domain mediates the binding of sulfated glycans, which can profoundly influence the conversion of PrP to pathological forms and the progression of prion disease. To investigate the structural consequences of sulfated glycan binding, we performed multidimensional heteronuclear (1H, 13C, 15N) NMR (nuclear magnetic resonance), circular dichroism (CD), and fluorescence studies on hamster PrP residues 23-106 (PrP 23-106) and fragments thereof when bound to pentosan polysulfate (PPS). While the majority of PrP 23-106 remain disordered upon PPS binding, the octarepeat region adopts a repeating loop-turn structure that we have determined by NMR. The β-like turns within the repeats are corroborated by CD data demonstrating that these turns are also present, although less pronounced, without PPS. Binding to PPS exposes a hydrophobic surface composed of aligned tryptophan side chains, the spacing and orientation of which are consistent with a self-association or ligand binding site. The unique tryptophan motif was probed by intrinsic tryptophan fluorescence, which displayed enhanced fluorescence of PrP 23-106 when bound to PPS, consistent with the alignment of tryptophan side chains. Chemical-shift mapping identified binding sites on PrP 23-106 for PPS, which include the octarepeat histidine and an N-terminal basic cluster previously linked to sulfated glycan binding. These data may in part explain how sulfated glycans modulate PrP conformational conversions and oligomerizations.  相似文献   

16.

Background

Prion diseases are associated with a conformational switch for PrP from PrPC to PrPSc. Many genetic mutations are linked with prion diseases, such as mutations T188K/R/A with fCJD.

Scope of review

MD simulations for the WT PrP and its mutants were performed to explore the underlying dynamic effects of T188 mutations on human PrP. Although the globular domains are fairly conserved, the three mutations have diverse effects on the dynamics properties of PrP, including the shift of H1, the elongation of native β-sheet and the conversion of S2-H2 loop to a 310 helix.

Major conclusions

Our present study indicates that the three mutants for PrP may undergo different pathogenic mechanisms and the realistic atomistic simulations can provide insights into the effects of disease-associated mutations on PrP dynamics and stability, which can enhance our understanding of how mutations induce the conversion from PrPC to PrPSc.General significanceOur present study helps to understand the effects of T188K/R/A mutations on human PrP: despite the three pathogenic mutations almost do not alter the native structure of PrP, but perturb its stability. This instability may further modulate the oligomerization pathways and determine the features of the PrPSc assemblies.  相似文献   

17.
《朊病毒》2013,7(3-4):245-252
ABSTRACT

Prion diseases have a wide host range, but prion-infected cases have never been reported in horses. Genetic polymorphisms that can directly impact the structural stability of horse prion protein have not been investigated thus far. In addition, we noticed that previous studies focusing on horse-specific amino acids and secondary structure predictions of prion protein were performed for limited parts of the protein. In this study, we found genetic polymorphisms in the horse prion protein gene (PRNP) in 201 Thoroughbred horses. The identified polymorphism was assessed to determine whether this polymorphism impedes stability of protein using PolyPhen-2, PROVEAN and PANTHER. In addition, we evaluated horse-specific amino acids in horse and mouse prion proteins using same methods. We found only one single nucleotide polymorphism (SNP) in the horse prion protein, and three annotation tools predicted that the SNP is benign. In addition, horse-specific amino acids showed different effects on horse and mouse prion proteins, respectively.

Abbreviations: PRNP: prion protein gene; SNP: single nucleotide polymorphism; CJD: Creutzfeldt-Jakob disease; CWD: chronic wasting disease; TME: transmissible mink encephalopathy; FSE: feline spongiform encephalopathy; MD: molecular dynamics; ER: endoplasmic reticulum; GPI: glycosylphosphatidylinositol; NMR: nuclear magnetic resonance; ORF: open reading frame; GWAS: genome-wide association study; NAPA: non-adaptive prion amplification; HMM: hidden Markov model; NCBI: National Center for Biotechnology Information  相似文献   

18.
The conversion of the cellular form of the prion protein (PrPC) to an abnormal, alternatively folded isoform (PrPSc) is the central event in prion diseases or transmissible spongiform encephalopathies. Recent studies have demonstrated de novo generation of murine prions from recombinant prion protein (recPrP) after inoculation into transgenic and wild-type mice. These so-called synthetic prions lead to novel prion diseases with unique neuropathological and biochemical features. Moreover, the use of recPrP in an amyloid seeding assay can specifically detect and amplify various strains of prions. We employed this assay in our experiments and analyzed in detail the morphology of aggregate structures produced under defined chemical constraints. Our results suggest that changes in the concentration of guanidine hydrochloride can lead to different kinetic traces in a typical thioflavin T(ThT) assay. Morphological and structural analysis of these aggregates by atomic force microscopy indicates a variation in the structure of the PrP molecular assemblies.In particular, ThT positive PrP aggregates produced from rec mouse PrP residues 89 to 230 lead to mostly oligomeric structures at low concentrations of guanidine hydrochloride, while more amyloidal structures were observed at higher concentrations of the denaturant. These findings highlight the presence of numerous and complex pathways in deciphering prion constraints for infectivity and toxicity.  相似文献   

19.
Variant CJD     
It is now 18 years since the first identification of a case of vCJD in the UK. Since that time, there has been much speculation over how vCJD might impact human health. To date there have been 177 case reports in the UK and a further 51 cases worldwide in 11 different countries. Since establishing that BSE and vCJD are of the same strain of agent, we have also shown that there is broad similarity between UK and non-UK vCJD cases on first passage to mice. Transgenic mouse studies have indicated that all codon 129 genotypes are susceptible to vCJD and that genotype may influence whether disease appears in a clinical or asymptomatic form, supported by the appearance of the first case of potential asymptomatic vCJD infection in a PRNP 129MV patient. Following evidence of blood transfusion as a route of transmission, we have ascertained that all blood components and leucoreduced blood in a sheep model of vCJD have the ability to transmit disease. Importantly, we recently established that a PRNP 129MV patient blood recipient with an asymptomatic infection and limited PrPSc deposition in the spleen could readily transmit disease into mice, demonstrating the potential for peripheral infection in the absence of clinical disease. This, along with the recent appendix survey which identified 16 positive appendices in a study of 32 441 cases, underlines the importance of continued CJD surveillance and maintaining control measures already in place to protect human health.  相似文献   

20.
《朊病毒》2013,7(2):153-162
Chronic wasting disease (CWD) is a major concern for the management of North American cervid populations. This fatal prion disease has led to declines in populations which have high CWD prevalence and areas with both high and low infection rates have experienced economic losses in wildlife recreation and fears of potential spill-over into livestock or humans. Research from human and veterinary medicine has established that the prion protein gene (Prnp) encodes the protein responsible for transmissible spongiform encephalopathies (TSEs). Polymorphisms in the Prnp gene can lead to different prion forms that moderate individual susceptibility to and progression of TSE infection. Prnp genes have been sequenced in a number of cervid species including those currently infected by CWD (elk, mule deer, white-tailed deer, moose) and those for which susceptibility is not yet determined (caribou, fallow deer, sika deer). Over thousands of sequences examined, the Prnp gene is remarkably conserved within the family Cervidae; only 16 amino acid polymorphisms have been reported within the 256 amino acid open reading frame in the third exon of the Prnp gene. Some of these polymorphisms have been associated with lower rates of CWD infection and slower progression of clinical CWD. Here we review the body of research on Prnp genetics of North American cervids. Specifically, we focus on known polymorphisms in the Prnp gene, observed genotypic differences in CWD infection rates and clinical progression, mechanisms for genetic TSE resistance related to both the cervid host and the prion agent and potential for natural selection for CWD-resistance. We also identify gaps in our knowledge that require future research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号