首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Staphylococcus aureus is an intracellular bacterium responsible for serious infectious processes. This pathogen escapes from the phagolysosomal pathway into the cytoplasm, a strategy that allows intracellular bacterial replication and survival with the consequent killing of the eukaryotic host cell and spreading of the infection. S. aureus is able to secrete several virulence factors such as enzymes and toxins. Our recent findings indicate that the main virulence factor of S. aureus, the pore-forming toxin α-hemolysin (Hla), is the secreted factor responsible for the activation of an alternative autophagic pathway. We have demonstrated that this noncanonical autophagic response is inhibited by artificially elevating the intracellular levels of cAMP. This effect is mediated by RAPGEF3/EPAC (Rap guanine nucleotide exchange factor (GEF)3/exchange protein activated by cAMP), a cAMP downstream effector that functions as a GEF for the small GTPase Rap. We have presented evidence that RAPGEF3 and RAP2B, through calpain activation, are the proteins involved in the regulation of Hla and S. aureus-induced autophagy. In addition, we have found that both, RAPGEF3 and RAP2B, are recruited to the S. aureus–containing phagosome. Of note, adding purified α-toxin or infecting the cells with S. aureus leads to a decrease in intracellular cAMP levels, which promotes autophagy induction, a response that favors pathogen intracellular survival, as previously demonstrated. We have identified some key signaling molecules involved in the autophagic response upon infection with a bacterial pathogen, which have important implications in understanding innate immune defense mechanisms.  相似文献   

5.
Spinal muscular atrophy (SMA) is a common and lethal autosomal recessive neurodegenerative disorder, which is caused by mutations of the survival motor neuron 1 (SMN1) gene. Additionally, the phenotype is modified by several genes nearby SMN1 in the 5q13 region. In this study, we analyzed mutations in SMN1 and quantified the modifying genes, including SMN2, NAIP, GTF2H2, and H4F5 by polymerase chain reaction–restriction fragment length polymorphism (PCR-RFLP), multiplex ligation-dependent probe amplification (MLPA), TA cloning, allele-specific long-range PCR, and Sanger sequencing in 157 SMA patients. Most SMA patients (94.90%) possessed a homozygous SMN1 deletion, while 10 patients demonstrated only the absence of exon 7, but the presence of exon 8. Two missense mutations (c.689 C > T and c.844 C > T) were identified in 2 patients who both carried a single copy of SMN1. We found inverse correlations between SMN2, the NAIP copy number, and the clinical severity of the disease. Furthermore, 7 severe type I patients possessed large-scale deletions, including SMN1, NAIP, and GTF2H2. We conclude that SMN1 gene conversion, SMN1 subtle mutations, SMN2 copy number, and the extent of deletion in the 5q13 region should all be considered in the genotype–phenotype analysis of SMA.  相似文献   

6.
Colorectal cancer (CRC) is one of the leading causes of death around the world. Its genetic mechanism was intensively investigated in the past decades with findings of a number of canonical oncogenes and tumor-suppressor genes such as APC, KRAS, and TP53. Recent genome-wide association and sequencing studies have identified a series of promising oncogenes including IDH1, IDH2, DNMT3A, and MYD88 in hematologic malignancies. However, whether these genes are involved in CRC remains unknown. In this study, we screened the hotspot mutations of these four genes in 305 CRC samples from Han Chinese by direct sequencing. mRNA expression levels of these genes were quantified by quantitative real-time PCR (RT-qPCR) in paired cancerous and paracancerous tissues. Association analyses between mRNA expression levels and different cancerous stages were performed. Except for one patient harboring IDH1 mutation p.I99M, we identified no previously reported hotspot mutations in colorectal cancer tissues. mRNA expression levels of IDH1, DNMT3A, and MYD88, but not IDH2, were significantly decreased in the cancerous tissues comparing with the paired paracancerous normal tissues. Taken together, the hotspot mutations of IDH1, IDH2, DNMT3A, and MYD88 gene were absent in CRC. Aberrant mRNA expression of IDH1, DNMT3A, and MYD88 gene might be actively involved in the development of CRC.  相似文献   

7.

Background & objectives

To analyze the reversal gene pairs and identify featured reversal genes related to mitogen-activated protein kinases (MAPK) signaling pathway and cell cycle in Glioblastoma multiforme (GBM) to reveal its pathogenetic mechanism.

Methods

We downloaded the gene expression profile GSE4290 from the Gene Expression Omnibus database, including 81 gene chips of GBM and 23 gene chips of controls. The t test was used to analyze the DEGs (differentially expressed genes) between 23 normal and 81 GBM samples. Then some perturbing metabolic pathways, including MAPK (mitogen-activated protein kinases) and cell cycle signaling pathway, were extracted from KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway database. Cancer genes were obtained from the database of Cancer Gene Census. The reversal gene pairs between DEGs and cancer genes were further analyzed in MAPK and cell cycle signaling pathway.

Results

A total 8523 DEGs were obtained including 4090 up-regulated and 4433 down-regulated genes. Among them, ras-related protein rab-13(RAB13), neuroblastoma breakpoint family member 10 (NBPF10) and disks large homologue 4 (DLG4) were found to be involved in GBM for the first time. We obtained MAPK and cell cycle signaling pathways from KEGG database. By analyzing perturbing mechanism in these two pathways, we identified several reversal gene pairs, including NRAS (neuroblastoma RAS) and CDK2 (cyclin-dependent kinase 2), CCND1 (cyclin D1) and FGFR (fibroblast growth factor receptor). Further analysis showed that NRAS and CDK2 were positively related with GBM. However, FGFR2 and CCND1 were negatively related with GBM.

Interpretation & conclusions

These findings suggest that newly identified DEGs and featured reversal gene pairs participated in MAPK and cell cycle signaling pathway may provide a new therapeutic line of approach to GBM.  相似文献   

8.
Tricho-dento-osseous (TDO) syndrome is an autosomal dominant disorder characterized by abnormalities in the thickness and density of bones and teeth. A 4-bp deletion mutation in the Distal-Less 3 (DLX3) gene is etiologic for most cases of TDO. To investigate the in vivo role of mutant DLX3 (MT-DLX3) on dentin development, we generated transgenic (TG) mice expressing MT-DLX3 driven by a mouse 2.3 Col1A1 promoter. Dentin defects were radiographically evident in all teeth and the size of the nonmineralized pulp was enlarged in TG mice, consistent with clinical characteristics in patients with TDO. High-resolution radiography, microcomputed tomography, and SEM revealed a reduced zone of mineralized dentin with anomalies in the number and organization of dentinal tubules in MT-DLX3 TG mice. Histological and immunohistochemical studies demonstrated that the decreased dentin was accompanied by altered odontoblast cytology that included disruption of odontoblast polarization and reduced numbers of odontoblasts. TUNEL assays indicated enhanced odontoblast apoptosis. Expression levels of the apoptotic marker caspase-3 were increased in odontoblasts in TG mice as well as in odontoblastic-like MDPC-23 cells transfected with MT-DLX3 cDNA. Expression of Runx2, Wnt 10A, and TBC1D19 colocalized with DLX3 expression in odontoblasts, and MT-DLX3 significantly reduced expression of all three genes. TBC1D19 functions in cell polarity and decreased TBC1D19 expression may contribute to the observed disruption of odontoblast polarity and apoptosis. These data indicate that MT-DLX3 acts to disrupt odontoblast cytodifferentiation leading to odontoblast apoptosis, and aberrations of dentin tubule formation and dentin matrix production, resulting in decreased dentin and taurodontism.In summary, this TG model demonstrates that MT-DLX3 has differential effects on matrix production and mineralization in dentin and bone and provides a novel tool for the investigation of odontoblast biology.  相似文献   

9.
Vertebrate akirin genes usually form a family with one-to-three members that regulate gene expression during the innate immune response, carcinogenesis and myogenesis. We recently established that an expanded family of eight akirin genes is conserved across salmonid fish. Here, we measured mRNA levels of the akirin family of Atlantic salmon (Salmo salar L.) during the differentiation of primary myoblasts cultured from fast-skeletal muscle. Using hierarchical clustering and correlation, the data was positioned into a network of expression profiles including twenty further genes that regulate myogenesis. akirin1(2b) was not significantly regulated during the maturation of the cell culture. akirin2(1a) and 2(1b), along with IGF-II and several igfbps, were most highly expressed in mononuclear cells, then significantly and constitutively downregulated as differentiation proceeded and myotubes formed/matured. Conversely, akirin1(1a), 1(1b), 1(2a), 2(2a) and 2(2b) were expressed at lowest levels when mononuclear cells dominated the culture and highest levels when confluent layers of myotubes were evident. However, akirin1(2a) and 2(2a) were first upregulated earlier than akirin1(1a), 1(1b) and 2(2b), when rates of myoblast proliferation were highest. Interestingly, akirin1(1b), 1(2a), 2(2a) and 2(2b) formed part of a module of co-expressed genes involved in muscle differentiation, including myod1a, myog, mef2a, 14-3-3β and 14-3-3γ. All akirin paralogues were expressed ubiquitously across ten tissues, although mRNA levels were regulated between cell-types and family members. Gene expression patterns were often highly correlated between akirin paralogues, suggesting that natural selection has maintained an intricate network of co-regulation among family members. We concluded that the Atlantic salmon akirin family performs a multifaceted role during myogenesis and has physiological functions spanning many cell-types.  相似文献   

10.
11.
We report a patient with a terminal 12p deletion associated with autism spectrum disorder (ASD). This 12p13.33 deletion is 1.5 Mb in size and encompasses 13 genes (B4GALNT3, CCDC77, ERC1, FBXL14, IQSEC3, KDM5A, LINC00942, LOC574538, NINJ2, RAD52, SLC6A12, SLC6A13 and WNK1). All previous cases reported with partial monosomy of 12p13.33 are associated with neurodevelopmental delay, and we suggest that ERC1, which encodes a regulator of neurotransmitter release, is the best gene candidate contributing to this phenotype as well as to the ASD of our patient.  相似文献   

12.
Ubiquitin modification at double strand breaks (DSB) sites is an essential regulator of signaling and repair. γH2AX extends from DSB sites and provides a platform for subsequent recruitment and amplification of DNA repair proteins and signaling factors. Here, we found that RNF8/RNF168 ubiquitylates γH2AX. We identified that USP11 is a unique deubiquitylation enzyme for γH2AX. USP11 deubiquitylates γH2AX both in vivo and in vitro but not the canonical (ub)-K119-H2A and (ub)-K120-H2B in vitro, and USP11 ablation enhances the levels of γH2AX ubiquitylation. We also found that USP11 interacts with γH2AX both in vivo and in vitro. We found that 53BP1 and ubiquitin-conjugated proteins are misregulated to be retained longer and stronger at DSB sites after knockdown of USP11. We further found that cells are hypersensitive to γ-irradiation after ablation of USP11. Together, our findings elucidate deeply and extensively the mechanism of RNF8/RNF168 and USP11 to maintain the proper status of ubiquitylation γH2AX to repair DSB.  相似文献   

13.
Reference genes are critical for normalization of the gene expression level of target genes. The widely used housekeeping genes may change their expression levels at different tissue under different treatment or stress conditions. Therefore, systematical evaluation on the housekeeping genes is required for gene expression analysis. Up to date, no work was performed to evaluate the housekeeping genes in cotton under stress treatment. In this study, we chose 10 housekeeping genes to systematically assess their expression levels at two different tissues (leaves and roots) under two different abiotic stresses (salt and drought) with three different concentrations. Our results show that there is no best reference gene for all tissues at all stress conditions. The reliable reference gene should be selected based on a specific condition. For example, under salt stress, UBQ7, GAPDH and EF1A8 are better reference genes in leaves; TUA10, UBQ7, CYP1, GAPDH and EF1A8 were better in roots. Under drought stress, UBQ7, EF1A8, TUA10, and GAPDH showed less variety of expression level in leaves and roots. Thus, it is better to identify reliable reference genes first before performing any gene expression analysis. However, using a combination of housekeeping genes as reference gene may provide a new strategy for normalization of gene expression. In this study, we found that combination of four housekeeping genes worked well as reference genes under all the stress conditions.  相似文献   

14.
15.
16.
Angelman syndrome is a neurodevelopmental disorder characterized by mental retardation, severe speech disorder, facial dysmorphism, secondary microcephaly, ataxia, seizures, and abnormal behaviors such as easily provoked laughter. It is most frequently caused by a de novo maternal deletion of chromosome 15q11–q13 (about 70–90%), but can also be caused by paternal uniparental disomy of chromosome 15q11–q13 (3–7%), an imprinting defect (2–4%) or in mutations in the ubiquitin protein ligase E3A gene UBE3A mostly leading to frame shift mutation. In addition, for patients with overlapping clinical features (Angelman-like syndrome), mutations in methyl-CpG binding protein 2 gene MECP2 and cyclin-dependent kinase-like 5 gene CDKL5 as well as a microdeletion of 2q23.1 including the methyl-CpG binding domain protein 5 gene MBD5 have been described. Here, we describe a patient who carries a de novo 5 Mb-deletion of chromosome 15q11.2–q13.1 known to be associated with Angelman syndrome and a further, maternally inherited deletion 2q21.3 (~ 364 kb) of unknown significance. In addition to classic features of Angelman syndrome, she presented with severe infections in the first year of life, a symptom that has not been described in patients with Angelman syndrome. The 15q11.2–q13.1 deletion contains genes critical for Prader–Willi syndrome, the Angelman syndrome causing genes UBE3A and ATP10A/C, and several non-imprinted genes: GABRB3 and GABRA5 (both encoding subunits of GABA A receptor), GOLGA6L2, HERC2 and OCA2 (associated with oculocutaneous albinism II). The deletion 2q21.3 includes exons of the genes RAB3GAP1 (associated with Warburg Micro syndrome) and ZRANB3 (not disease-associated). Despite the normal phenotype of the mother, the relevance of the 2q21.3 microdeletion for the phenotype of the patient cannot be excluded, and further case reports will need to address this point.  相似文献   

17.
18.

Background

Oculocutaneous Albinism (OCA) is a heterogeneous group of inherited diseases involving hair, skin and eyes. To date, six forms are recognized on the effects of different melanogenesis genes.OCA4 is caused by mutations in SLC45A2 showing a heterogeneous phenotype ranging from white hair, blue irides and nystagmus to brown/black hair, brown irides and no nystagmus. The high clinic variety often leads to misdiagnosis.Our aim is to contribute to OCA4 diagnosis defining SLC45A2 genetic variants in Italian patients with OCA without any TYR, OCA2 and TYRP1 gene defects.

Materials and methods

After the clinical diagnosis of OCA, all patients received genetic counseling and genetic test. Automatic sequencing of TYR, OCA2, and TYRP1 genes was performed on DNA of 117 albino patients. Multiplex Ligation-dependent Probe Amplification (MLPA) was carried out on TYR and OCA2 genes to increase the mutation rate. SLC45A2 gene sequencing was then executed in the patients with a single mutation in one of the TYR, OCA2, TYRP1 genes and in the patients, which resulted negative at the screening of these genes.

Results

SLC45A2 gene analysis was performed in 41 patients and gene alterations were found in 5 patients. Four previously reported SLC45A2 mutations were found: p.G100S, p.W202C, p.A511E and c.986delC, and three novel variants were identified: p.M265L, p.H94D, and c.1156+1G>A. All the alterations have been detected in the group of patients without mutations in the other OCA genes.

Conclusions

Three new variants were identified in OCA4 gene; the analysis allowed the classification of a patient previously misdiagnosed as OA1 because of skin and hair pigmentation presence. The molecular defects in SLC45A2 gene represent the 3.4% in this cohort of Italian patients, similar to other Caucasian populations; our data differ from those previously published by an Italian researcher group, obtained on a smaller cohort of patients.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号