首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
RNase III enzymes are a highly conserved family of proteins that specifically cleave double-stranded (ds)RNA. These proteins are involved in a diverse group of functions, including ribosomal RNA processing, mRNA maturation and decay, snRNA and snoRNA processing, and RNA interference. Here we report the crystal structure of the nuclease domain of RNase III from the pathogen Mycobacterium tuberculosis. Although globally similar to other RNase III folds, this structure has some features not observed in previously reported models. These include the presence of an additional metal ion near the catalytic site, as well as conserved secondary structural elements that are proposed to have functional roles in the recognition of dsRNAs.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
Using a pre-RNA containing the simian virus 40 early introns and poly(A) addition site, we investigated several possible requirements for accurate and efficient mRNA 3' end cleavage and polyadenylation in a HeLa cell nuclear extract. Splicing and 3' end formation occurred under the same conditions but did not appear to be coupled in any way in vitro. Like splicing, 3' end cleavage and polyadenylation each required Mg2+, although spermidine could substitute in the cleavage reaction. Additionally, cleavage of this pre-RNA, but not others, was totally blocked by EDTA, indicating that structural features of pre-RNA may affect the ionic requirements of 3' end formation. The ATP analog 3' dATP inhibited both cleavage and polyadenylation even in the presence of ATP, possibly reflecting the coupled nature of these activities. A 5' cap structure appears not to be required for mRNA 3' end processing in vitro because neither the presence or absence of a 5' cap on the pre-RNA nor the addition of cap analogs to reaction mixtures had any effect on the efficiency of 3' end processing. Micrococcal nuclease pretreatment of the nuclear extract inhibited cleavage and polyadenylation. However, restoration of activity was achieved by addition of purified Escherichia coli RNA, suggesting that the inhibition caused by such a nuclease treatment was due to a general requirement for mass of RNA rather than to destruction of a particular nucleic acid-containing component such as a small nuclear ribonucleoprotein.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
RNA降解体(细菌RNA降解的主要执行者)是一种多亚基的蛋白质复合物,主要由RNA解螺旋酶、聚核苷酸磷酸化酶(polynucleotide phosphorylase,PNPase)、内切核酸酶(ribonuclease E,RNase E)以及糖酵解途径中的烯醇化酶、磷酸果糖激酶等组成,参与核糖体RNA(ribosome RNA,rRNA)的加工以及信使RNA(messenger RNA,mRNA)的降解。此外,RNA分子伴侣Hfq和调控小RNA(small RNA,sRNA)在RNA稳定性调控中也发挥着重要作用。综述了细菌RNA稳定性调控相关功能元件,特别是降解体蛋白及RNA分子伴侣Hfq的最新进展,以期为研究细菌RNA稳定性及其参与的代谢调控提供理论参考。  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号